- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
18.5. Основные распределения непрерывных случайных величин
Равномерное распределение
Определение 1. Распределение вероятностей называется равномерным, если на интервале возможных значений случайной величины плотность распределения является постоянной.
Пусть на интервале (a, b) плотность распределения является постоянной величиной: f(x) = С. Определим значение С из условия (18.35):
откуда получаем, что f(x) = С = 1/(b - а). Значит, искомая плотность равномерного распределения дается формулой
График плотности равномерного распределения указан на рис. 18.5.
Пример 1. Найти среднеквадратическое отклонение случайной величины X, распределенной равномерно на интервале (1, 5).
Решение. Согласно формуле (18.39), плотность распределения указанной случайной величины является ненулевой и равна 0,25 на интервале (1, 5). По формулам (18.36) и (18.38) последовательно вычисляем:
Пример 2. Радиус круга измерен приближенно на интервале (а, b). Полагая, что радиус является случайной величиной X, распределенной равномерно в этом интервале, найти математическое ожидание и дисперсию площади круга.
Решение. Площадь круга также является случайной величиной, вычисляемой по формуле Y = πX2; она имеет то же равномерное распределение, что и случайная величина X. По формулам (18.36) и (18.38) получаем
Нормальное распределение
Определение 2. Общим нормальным распределением вероятностей непрерывной случайной величины Х называется распределение с плотностью
Нормальное распределение задается двумя параметрами: а и σ. Согласно определениям математического ожидания и дисперсии (формулы (18.36) и (18.38)), после выполнения соответствующих интегрирований можно вывести, что для нормального распределения справедливы формулы
Определение 3. Нормальное распределение с параметрами а = 0 и σ = 1 называется нормированным; его плотность равна
Рассмотрим функцию нормального распределения как первообразную плотности распределения вероятностей. Для случая нормированного нормального распределения (18.41) она, согласно формуле (18.34), имеет вид
Поскольку функция (18.41) является четной, то неопределенный интеграл от нее является нечетной функцией, и потому вместо функции распределения (18.42) используется функция Лапласа (см. п. 17.5)
Функции (18.41) и (18.43) табулированы (см. Приложение).
График плотности нормального распределения (18.40) для разных значений а показан на рис. 18.6.
Определение 4. Модой Мо(Х) называется возможное значение случайной величины X, при котором плотность распределения имеет максимум.
Определение 5. Медианой Ме(Х) называется такое возможное значение случайной величины X, что вертикальная прямая х = Me(X) делит пополам площадь, ограниченную кривой плотности распределения.
Нетрудно видеть, что график плотности нормального распределения симметричен относительно прямой х = а, и потому и мода и медиана в данном случае совпадают с математическим ожиданием:
Пусть случайная величина Х задана плотностью нормального распределения (18.40), тогда вероятность того, что Х примет значение на интервале (α, β), согласно формуле (18.33), равна
Преобразование этой формулы путем введения новой переменной интегрирования z = (х - а)/σ приводит к удобной вычислительной формуле:
где Ф — функция Лапласа, определенная по формуле (18.43).
Пример 3. Случайная величина распределена по нормальному закону с математическим ожиданием и средним квадратическим отклонением, соответственно равными 10 и 5. Найти вероятность того, что Х примет значение на интервале (20, 30).
Решение. Воспользуемся формулой (18.44). По условию а = 10, σ = 5, α = 20 и β = 30. Следовательно,
По табл. 2 Приложения находим соответствующие значения функции Лапласа и окончательно получаем
Пример 4. Магазин производит продажу мужских костюмов. По данным статистики, распределение по размерам является нормальным с математическим ожиданием и средним квадратическим отклонением, соответственно равными 48 и 2. Определить процент спроса на 50-й размер при условии разброса значений этой величины в интервале (49, 51).
Решение. По условию задачи а = 48, σ = 2, α = 49, β = 51. Используя формулу (18.44), получаем, что вероятность спроса на 50-й размер в заданном интервале равна
Следовательно, спрос на 50-й размер костюмов составит около 24%, и магазину нужно предусмотреть это в общем объеме закупки.
Асимметрия и эксцесс
В прикладных задачах, например в математической статистике, при теоретическом изучении эмпирических распределений, отличающихся от нормального распределения, возникает необходимость количественных оценок этих различий. Для этой цели введены специальные безразмерные характеристики.
Определение 6. Асимметрией теоретического распределения называется отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:
Определение 7. Эксцессом теоретического распределения называется величина, определяемая равенством
где μ4 — центральный момент четвертого порядка.
Для нормального распределения As = Еk = 0. При отклонении от нормального распределения асимметрия положительна, если "длинная" и более пологая часть кривой распределения расположена справа от точки на оси абсцисс, соответствующей моде; если эта часть кривой расположена слева от моды, то асимметрия отрицательна (рис. 18.7, а, б).
Эксцесс характеризует "крутизну" подъема кривой распределения по сравнению с нормальной кривой: если эксцесс положителен, то кривая имеет более высокую и острую вершину; в случае отрицательного эксцесса сравниваемая кривая имеет более низкую и пологую вершину (рис. 18.7, в).
Следует иметь в виду, что при использовании указанных характеристик сравнения опорными являются предположения об одинаковых величинах математического ожидания и дисперсии для нормального и теоретического распределений.
Пример 5. Пусть дискретная случайная величина Х задана законом следующего распределения:
Найти асимметрию и эксцесс теоретического распределения.
Решение. Найдем сначала математическое ожидание случайной величины:
Затем вычисляем начальные и центральные моменты 2, 3 и 4-го порядков и среднее квадратическое отклонение (см. формулы (18.27)-(18.31)):
Теперь по формулам (18.45) и (18.46) находим искомые величины:
В данном случае "длинная" часть кривой распределения расположена справа от моды, причем сама кривая является несколько более островершинной, чем нормальная кривая с теми же величинами математического ожидания и дисперсии.
