- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
18.3. Система двух случайных величин
Двумерная случайная величина
До сих пор мы рассматривали дискретные случайные величины, которые называют одномерными: их возможные значения определялись одним числом. Кроме одномерных величин рассматривают также величины, возможные значения которых определяются несколькими числами. Двумерную случайную величину обозначают через (X, Y); каждая из величин X и Y называется компонентой (составляющей). Обе величины Х и Y, рассматриваемые одновременно, образуют систему двух случайных величин. Например, при штамповке стальных пластинок их длина и ширина представляют собой двумерную случайную величину.
Определение 1. Законом распределения двумерной случайной величины (X, Y) называют множество возможных пар чисел (xi, yj) и их вероятностей p(xi, yj). Двумерную случайную величину можно трактовать как случайную точку А(Х, Y) на координатной плоскости.
Закон распределения двумерной случайной величины обычно задается в виде таблицы, в строках которой указаны возможные значения xi случайной величины X, а в столбцах — возможные значения yj случайной величины Y, на пересечениях строк и столбцов указаны соответствующие вероятности pij. Пусть случайная величина Х может принимать п значений, а случайная величина Y - т значений. Тогда закон распределения двумерной случайной величины (X, Y) имеет вид
Из этой таблицы можно найти законы распределения каждой из случайных компонент. Например, вероятность того, что случайная величина Х примет значение хk, равна, согласно теореме сложения вероятностей независимых событий,
Иными словами, для нахождения вероятности Р(хk) нужно просуммировать все т вероятностей по k-му столбцу таблицы (18.21). Аналогично получается вероятность того, что случайная величина Y примет возможное значение уr: Р(уr) получается суммированием всех n вероятностей r-й строки таблицы (18.21) (r = 1, 2, ... ,m). Отсюда следует, что сумма всех вероятностей в законе распределения (18.21) равна единице:
Пример 1. Задано распределение двумерной случайной величины:
Найти распределения Х, Y и Х + Y.
Решение. В нашем случае возможные значения случайной величины X: х1 = 1, х2 = 2, x3 = 3. Тогда, согласно формуле (18.22), имеем P(x1) = 0,1 + 0,2 = 0,3, P(x2) = 0,15 + 0,22 = 0,37, Р(x3) = 0,12 + 0,21 = 0,33. Отсюда получаем закон распределения X:
Аналогично получаем и для распределения Y: у1 = 1, y2 = 2; P(y1) = 0,1 + 0,15 + 0,12 = 0,37, P(y2) = 0,2 + 0,22 + 0,21 = 0,63;
Теперь найдем распределение X+Y. Возможные значения этой случайной величины: 2, 3, 4 и 5. Соответствующие вероятности Р(2) = 0,1, Р(3) = 0,15 + 0,2 = 0,35, Р(4) = 0,12 + 0,22 = 0,34, Р(5) = 0,21. Отсюда находим искомое распределение:
В случае системы двух случайных величин используются кроме математических ожиданий и дисперсий еще и другие числовые характеристики, описывающие их взаимосвязь.
Корреляционный момент
Определение 2. Корреляционным моментом случайных величин Х и Y (или ковариацией) называется математическое ожидание произведений их отклонений:
Корреляционный момент служит для описания связи между случайными величинами Х и Y. Из свойств математического ожидания легко убедиться в том, что μxy можно записать в следующем виде:
Для непосредственного вычисления корреляционного момента (ковариации) используется формула (см. распределение (18.21))
ТЕОРЕМА 3. Корреляционный момент двух независимых случайных величин Х и Y равен нулю.
Если корреляционный момент μxу не равен нулю, то, стало быть, величины Х и Y являются зависимыми.
Коэффициент корреляции
Из определения корреляционного момента следует, что его размерность равна произведению размерностей величин Х и Y; например, если Х и Y измерены в сантиметрах, то μxy имеет размерность см2.
Это обстоятельство затрудняет сравнение корреляционных моментов различных систем случайных величин. Для устранения этого недостатка вводят безразмерную числовую характеристику — коэффициент корреляции, величина которого не зависит от выбора системы измерения случайных величин.
Определение 3. Коэффициентом корреляции случайных величин Х и Y называется отношение их корреляционного момента к произведению средних квадратических отклонений этих величин:
Из определения и свойств математического ожидания и дисперсии следует важный вывод, что абсолютная величина коэффициента корреляции не превосходит единицы:
Определение 4. Две случайные величины Х и Y называются коррелированными, если их корреляционный момент (коэффициент корреляции) отличен от нуля; если же их корреляционный момент равен нулю, то Х и Y называются некоррелированными.
Таким образом, две коррелированные случайные величины (т.е. при rxy ≠ 0) являются также и зависимыми. Обратное утверждение неверно, т.е. две зависимые величины могут быть как коррелированными, так и некоррелированными.
Пример 2. Найти корреляционный момент и коэффициент корреляции двух случайных величин Х и Y, распределения которых заданы в предыдущем примере 1.
Решение. Воспользуемся формулами (18.24), (18.26), а также формулой вычисления центрального момента второго порядка (18.19); последовательно вычисляем: М(Х) = 2,03, М(Y) = 1,63, D(X) = 0,629, D(Y) = 0,233,
В данном случае коэффициент корреляции близок к нулю; это означает, что случайные величины Х и Y слабокоррелированы.
Линейная регрессия
Пусть (X, Y) — двумерная случайная величина, где Х и Y — зависимые случайные величины. Оказывается возможным приближенное представление величины Y в виде линейной функции величины X:
где а и b — параметры, подлежащие определению. Обычно эти величины определяются с помощью метода наименьших квадратов (см. п. 8.5).
Определение 5. Функция (18.27) называется наилучшим приближением в смысле метода наименьших квадратов, если математическое ожидание M[Y — g(Х)]2 принимает наименьшее возможное значение. Функцию g(х) называют среднеквадратической регрессией Y на X.
ТЕОРЕМА 4. Линейная средняя квадратическая регрессия Y на Х имеет вид
где rxy определяется формулой (18.25), ту = M(Y) и mx = М(Х) — математические ожидания соответственно случайных величин Y и X.
Коэффициент b = rxуσу / σx называют коэффициентом регрессии Y на Х, а прямую
реализующую линейную зависимость (18.28) случайной величины Y от случайной величины X, называют прямой среднеквадратической регрессии Х на Y. Поскольку зависимость (18.28) является приближенной, то существует погрешность этого приближения, называемая остаточной дисперсией:
Аналогичную форму записи имеет прямая среднеквадратическая регрессия Х на Y:
Пример 3. Найти линейную среднюю квадратическую регрессию и остаточную дисперсию случайной величины Y на случайную величину Х по данным примеров 1 и 2.
Решение.
Для двумерной случайной величины (X,
Y),
приведенной
в примере 1, все необходимые числовые
характеристики указаны в решении примера
2: mx
= 2,03, ту
= 1,63, rху
= -0,023, σx
=
=
0,793, σy
=
= 0,483. Из уравнения (18.28) получаем искомое
соотношение:
Остаточная дисперсия рассчитывается по формуле (18.29):
Для оценки среднеквадратичной погрешности линейной регрессии обычно используют величину ε, в нашем случае она составляет
