
- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
17.3. Теорема умножения вероятностей
Произведение событий и условная вероятность
Определение 1. Произведением двух событий А и В называется событие АВ, означающее совместное появление этих событий (см. гл. 1.1, произведение множеств).
Например, если событие А — шар, событие В — белый цвет, то их произведение АВ — белый шар. Аналогично определяется произведение нескольких событий, как совместное появление их всех.
Если при вычислении вероятности события никаких других ограничений кроме необходимого комплекса условий S не налагается, то такая вероятность называется безусловной. Если же налагаются другие дополнительные условия, содержащие случайные события, то вероятность такого события называется условной.
Определение 2. Вероятность события В в предположении о наличии события А называют условной вероятностью РA(В).
Пример 1. В ящике лежит 11 деталей, 3 из них нестандартные. Из ящика дважды берут по одной детали, не возвращая их обратно. Найти вероятность того, что во второй раз из ящика будет извлечена стандартная деталь — событие В, если в первый раз была извлечена нестандартная деталь — событие А.
Решение. После первого извлечения в ящике из 10 деталей осталось 8 стандартных, и, следовательно, искомая вероятность
Пусть теперь известны вероятность Р(А) события А и условная вероятность РА(В) события В. Тогда справедлива следующая теорема.
ТЕОРЕМА 3. Вероятность произведения двух событий определяется формулой
Пример 2. В условиях примера 1 найти вероятности того, что в первый раз извлечена нестандартная деталь, а во второй раз — стандартная, и наоборот.
Решение. Итак, событие А — это извлечение из ящика нестандартной детали, а событие В — стандартной. Тогда возможны два случая. 1) Вероятность Р(А) = 3/11, а условная вероятность РA(В) = 0,8. Искомая вероятность произведения этих событий (их совместного появления в указанном порядке) равна, согласно теореме 17.3,
2) Вероятность Р(В) = 8/11, а условная вероятность РB(А) = 0,3. Мы видим, что и в этом случае вероятность произведения событий Р(ВА) = Р(В)РB(А) ≈ 0,22.
В этом примере мы проверили известное в теории равенство
Теорема 17.3 допускает обобщение на случай произведения любого числа событий A1, А2, А3, ..., An:
т.е. вероятность совместного появления п событий равна произведению п вероятностей, где PA1A2...Ak-1(Ak) — условные вероятности событий Ak в предположении, что события A1A2 ... Ak-1 уже произошли (k = 1, 2, ... , п).
Пример 3. В урне находится 4 белых шара, 5 красных и 3 синих. Наудачу извлекают по одному шару, не возвращая его обратно. Найти вероятность того, что в первый раз появится белый шар (событие А), во второй раз — красный (событие В), в третий — синий (событие С).
Решение. Вероятность появления белого шара в первом извлечении Р(А) = 1/3; условная вероятность появления красного шара во втором извлечении при условии появления в первый раз белого шара РA(В) = 5/11; условная вероятность появления синего шара в третьем извлечении при условиях появления в предыдущих извлечениях белого и красного шаров РAB(С) = 0,3. Искомая вероятность определяется по формуле (17.6) при п = 3:
Независимые события
Определение 3. Событие В называется независимым от события А, если условная вероятность события В равна его безусловной вероятности (появление события А не влияет на вероятность события В):
Отсюда следует, что и событие А также независимо от события В:
Для независимых событий теорема умножения вероятностей 17.3 в общей форме, которая следует из (17.6), имеет вид
Равенство (17.7) принимается за определение независимых событий. При этом если события независимы, то независимы также и соответствующие им противоположные события.
Пример 4. Найти вероятность поражения цели при совместной стрельбе тремя орудиями, если вероятности поражения цели орудиями соответственно равны 0,9, 0,8 и 0,7 (события А, B и С).
Решение. Поскольку события А, В и С являются независимыми, то искомая вероятность вычисляется, согласно формуле (17.7), при n = 3:
Когда в результате испытания может иметь место n независимых событий с известными вероятностями их появления, особый интерес представляет случай нахождения вероятности наступления хотя бы одного из них (например, в случае трех событий найти вероятность наступления либо одного, либо двух, либо трех событий). Обозначим это событие через А. Справедлива следующая теорема.
ТЕОРЕМА 4. Вероятность появления хотя бы одного из независимых событий А1, A2, ... , Аn определяется формулой
где qi = 1 — pi — вероятности соответствующих противоположных событий i (i = 1, 2,... , n).
В частном случае, когда все события Аi имеют одинаковую вероятность р, из формулы (17.8) следует, что
Пример 5. В условиях примера 4 найти вероятность поражения цели (хотя бы одного попадания) при залповой стрельбе орудий.
Решение. Вероятности противоположных событий (промахов) соответственно равны q1 = 0,1, q2 = 0,2, q3 = 0,3. Искомая вероятность находится по формуле (17.8) при п = 3:
Из этого примера наглядно видно преимущество совместного воздействия случайных событий с целью достижения общего результата.
Пример 6. На перевозку груза направлены 4 автомобиля. Вероятность нахождения каждой из машин в исправном состоянии равна 0,8. Найти вероятность того, что в работе участвует хотя бы один из выделенных для этого автомобилей.
Решение. Вероятность противоположного события (машина неисправна) равна q = 1 - 0,8 = 0,2. По формуле (17.9) находим искомую вероятность при n = 4:
Пример 7. Вероятность обслуживания клиента одним операционистом в банке равна 0,6. Какое минимальное число операционистов должно работать в банке, чтобы вероятность обслуживания клиента была не менее 0,95?
Решение. Вероятность противоположного события (отказ в обслуживании клиента операционистом) равна 0,4. Пусть n — количество операционистов, удовлетворяющее условию задачи, т.е.
Решая это неравенство, получаем
Логарифмирование обеих частей этого неравенства дает
Поскольку n должно быть целым числом, окончательно получаем, что в банке должны работать не менее 4 операционистов.