- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
События, происходящие в окружающем нас мире, можно разделить на три вида: достоверные, невозможные и случайные. Достоверным относительно комплекса условий S называется событие, которое обязательно произойдет при осуществлении этого комплекса условий. Например, если гладкий желоб с лежащим внутри него тяжелым шариком наклонить, то шарик обязательно покатится по желобу в сторону уклона. Невозможным называется событие, которое заведомо не произойдет при осуществлении комлекса условий S. Например, из герметически изолированного сосуда вода не может вылиться. Случайным относительно комплекса условий S называется событие, которое при осуществлении указанного комплекса условий может либо произойти, либо не произойти. Например, если вы уронили фарфоровую чашку на пол, то она может как разбиться, так и остаться неповрежденной.
Теория вероятностей имеет дело со случайными событиями. Однако она не может предсказать, произойдет единичное событие или нет. Теория вероятностей изучает вероятностные закономерности массовых однородных случайных событий. Ее методы получили широкое распространение в различных областях естествознания и в прикладных проблемах техники. Теория вероятностей легла в основу теории массового обслуживания и теории надежности. В последние годы аппарат теории вероятностей активно используется в экономике.
17.1. Основные понятия теории вероятностей
Некоторые формулы комбинаторики
Пусть задано конечное множество элементов некоторой природы. Из них можно составлять определенные комбинации, количества которых изучает комбинаторика. Некоторые ее формулы используются в теории вероятности; приведем их.
Комбинации, состоящие из одной и той же совокупности п различных элементов и отличающиеся только порядком их расположения, называются перестановками. Число всех возможных перестановок определяется произведением чисел от единицы до п:
Пример 1. Сколько четырехзначных чисел можно составить из цифр 1, 2, 3 и 4 с использованием всех указанных цифр в каждом числе ?
Решение. Искомое число равно Р4 = 4! = 1 ∙ 2 ∙ 3 ∙ 4 = 24.
Комбинации по т элементов, составленные из п различных элементов (m ≤ п), отличающиеся друг от друга либо элементами, либо их порядком, называются размещениями. Число всевозможных размещений
Пример 2. Сколько трехзначных чисел можно составить из семи различных цифр при отсутствии среди них нуля ?
Решение. Искомое количество цифр
Комбинации, содержащие по т элементов каждая, составленные из п различных элементов (m ≤ п) и различающиеся хотя бы одним элементом, называются сочетаниями. Число сочетаний дается формулой
Можно показать, что справедливы формулы
В частности, первую из формул удобно использовать в расчетах, когда т > п/2.
Напомним формулу бинома Ньютона, в которой участвуют коэффициенты (17.1):
Пример 3. Сколькими способами можно выбрать а) по три карты, б) по 32 карты из колоды, содержащей 36 игральных карт?
Решение. Искомое число способов:
Виды случайных событий
Выше было введено определение случайного события. Обычно в теории вероятностей вместо "совокупности условий" употребляют термин "испытание", и тогда событие трактуется как результат испытания. Например, стрельба по мишени: выстрел — это испытание, попадание в мишень — это событие. Другой пример: подбрасывание монеты вверх — это испытание, выпадение орла (или решки) — это событие.
Определение 1. События называют несовместными, если в одном и том же испытании появление одного из них исключает появление других. Например, выпадение орла при подбрасывании монеты исключает появление в этом же испытании решки и наоборот.
Определение 2. Несколько событий образуют полную группу, если в результате испытания появление хотя бы одного из них является достоверным событием. Например, при произведении выстрела по мишени (испытание) обязательно будет либо попадание, либо промах; эти два события образуют полную группу.
Следствие. Если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий.
Этот частный случай будет использован далее.
Классическое определение вероятности
Назовем каждый из возможных результатов испытания элементарным событием, или исходом. Те элементарные исходы, которые интересуют нас, называются благоприятными событиями.
Определение 3. Отношение числа благоприятствующих событию А элементарных исходов к общему числу равновозможных несовместных элементарных исходов, образующих полную группу, называется вероятностью события А.
Вероятность события А обозначается Р(А). Понятие вероятности является одним из основных в теории вероятностей. Данное выше определение является классическим. Из него вытекают некоторые свойства.
Свойство 1. Вероятность достоверного события равна единице.
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число:
Следовательно, вероятность любого события удовлетворяет неравенству
Отметим, что современные курсы теории вероятностей основаны на теоретико-множественном подходе, в котором элементарные события являются точками пространства элементарных событий Ω; при этом событие А отождествляется с подмножеством элементарных исходов, благоприятствующих этому событию, А Ω.
Приведем примеры непосредственного вычисления вероятностей.
Пример 4. В коробке лежит 10 шаров: 6 белых и 4 черных. Найти вероятность того, что из пяти взятых наугад шаров будет 4 белых.
Решение.
Найдем число благоприятных исходов:
число способов, которыми можно взять 4
белых шара из 6 имеющихся, равно C
=
C
=
.
= 15. Общее число исходов определяется
числом сочетаний из 10 по 5: C
= 252. Согласно
определению 3 искомая вероятность Р
= 15/252 ≈ 0,06.
Пример 5. Какова вероятность того, что при заполнении карточки спортивной лотереи "6 из 36" будет угадано 4 номера?
Решение.
Общее число исходов равно C
= 1947792. Число благоприятных исходов равно
С
= 15. Отсюда
искомая вероятность равна 7,7 ∙ 10-6.
Пример 6. В ящике находится 10 стандартных и 5 нестандартных деталей. Какова вероятность, что среди наугад взятых 6 деталей будет 4 стандартных и 2 нестандартных?
Решение.
Общее число исходов равно С
.
Число благоприятных исходов определяется
произведением С
С
,
где первый сомножитель соответствует
числу вариантов изъятия из ящика 4-х
стандартных деталей из 10, а второй —
числу вариантов изъятия из ящика 2-х
нестандартных деталей из пяти. Отсюда
следует, что искомая вероятность равна
