
- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
1.5. Абсолютная величина числа
Приведем определение абсолютной величины вещественного числа х (модуля числа):
х
,
если х
≥ 0;
|x| =
-х, если х < 0.
Из этого определения следует ряд свойств абсолютной величины, который мы приводим ниже без доказательств.
1. |х| ≥ 0.
2. |х| = | - x|.
3. -|х| ≤ х ≤ |x| .
4. Пусть а — положительное число. Тогда неравенства |х| ≤ а и -а ≤ х ≤ а равносильны.
5. Для любых двух действительных чисел х и у справедливо неравенство
|x + y| ≤ |x| + |y|.
В это свойство можно включить также и неравенство
|х – у| ≤ |х| + |у|.
6. Для любых двух действительных чисел х и y справедливо неравенство
|х – y| ≥ |х| -|у|.
УПРАЖНЕНИЯ
Определить множества значений x, удовлетворяющих следующим условиям.
|х| < 2. 1.2. x2 ≤ 9. 1.3. х2 > 25. 1.4. |x – 3| < 1. 1.5. (x2 + l) ≤ 17. 1.6 (x2 - 3) ≥ 1. 1.7. х - х2 > 0.
1.8. x2 – 2x + 7 > 0. 1.9. x2 – 2x + 5 < 0.
Глава 2. Предел последовательности
2.1. Числовые последовательности
Числовые последовательности и операции над ними
Числовые последовательности представляют собой бесконечные множества чисел. Примерами последовательностей могут служить: последовательность всех членов бесконечной геометрической прогрессии, последовательность приближенных значений (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последовательности.
Определение 1. Если каждому числу n из натурального ряда чисел 1, 2, 3,..., п,... поставлено в соответствие вещественное число xп, то множество вещественных чисел
x1, x2, x3, …, xn, … (2.1)
называется числовой последовательностью, или просто последовательностью. .
Числа х1, x2, x3, ..., xп, ... будем называть элементами, или членами последовательности (2.1), символ xп — общим элементом, или членом последовательности, а число п — его номером. Сокращенно последовательность (2.1) будем обозначать символом {хп}. Например, символ {1/n} обозначает последовательность чисел
.
Иными словами, под последовательностью можно понимать бесконечное множество занумерованных элементов или множество пар чисел (п, xп), в которых первое число принимает последовательные значения 1, 2, 3, ... . Последовательность считается заданной, если указан способ получения любого ее элемента. Например, формула xп = -1 + (-1)n определяет последовательность 0, 2, 0, 2,... .
Геометрически последовательность изображается на числовой оси в виде последовательности точек, координаты которых равны соответствующим членам последовательности. На рис. 2.1 изображена последовательность {хп} = {1/n} на числовой прямой.
Понятие сходящейся последовательности
Определение 2. Число а называется пределом последовательности {xn}, если для любого положительного числа ε существует такой номер N, что при всех п > N выполняется неравенство
(2.2)
Последовательность, имеющая предел, называется сходящейся. Если последовательность имеет своим пределом число а, то это записывается так:
Последовательность, не имеющая предела, называется расходящейся.
Определение 3. Последовательность, имеющая своим пределом число а = 0, называется бесконечно малой последовательностью.
Замечание 1. Пусть последовательность {хп} имеет своим пределом число а. Тогда последовательность {αn}= {xn — a} есть бесконечно малая, т.е. любой элемент xп сходящейся последовательности, имеющей предел а, можно представить в виде
где αn — элемент бесконечно малой последовательности {αn}.
Замечание 2. Неравенство (2.2) эквивалентно неравенствам (см. свойство 4 модуля числа из п. 1.5)
Это означает, что при п > N все элементы последовательности {xn} находятся в ε-окрестности точки а (рис. 2.2), причем номер N определяется по величине ε.
Интересно дать геометрическую интерпретацию этого определения. Поскольку последовательность представляет собой бесконечное множество чисел, то если она сходится, в любой ε-окрестности точки а на числовой прямой находится бесконечное число точек — элементов этой последовательности, тогда как вне ε-окрестности остается конечное число элементов. Поэтому предел последовательности часто называют точкой сгущения.
Замечание 3. Неограниченная последовательность не имеет конечного предела. Однако она может иметь бесконечный предел, что записывается в следующем виде:
(2.3)
Если при этом начиная с некоторого номера все члены последовательности положительны (отрицательны), то пишут
Если {xn} — бесконечно малая последовательность, то {1/xп} — бесконечно большая последовательность, имеющая бесконечный предел в смысле (2.3), и наоборот.
Приведем примеры сходящихся и расходящихся последовательностей.
Пример
1.
Показать, используя определение предела
последовательности, что
.
Решение. Возьмем любое число ε > 0. Так как
то чтобы выполнялось неравенство (2.2), достаточно решить неравенство 1 / (n + 1) < ε, откуда получаем n > (1 — ε) / ε. Достаточно принять N = [(1 — ε)/ε] (целая часть числа (1 — ε)/ ε)* , чтобы неравенство |xп — 1| < ε выполнялось при всех п > N.
* Символ [a] означает целую часть числа а, т.е. наибольшее целое число, не превосходящее а. Например, [2] = 2, [2,5] = 2, [0,8] = 0, [-0, 5] = -1, [-23,7] = -24.
Пример 2. Показать, что последовательность {хп} = (-1)n, или -1, 1, -1, 1,... не имеет предела.
Решение. Действительно, какое бы число мы ни предположили в качестве предела: 1 или —1, при ε < 0,5 неравенство (2.2), определяющее предел последовательности, не удовлетворяется — вне ε -окрестности этих чисел остается бесконечное число элементов xп: все элементы с нечетными номерами равны —1, элементы с четными номерами равны 1.
Основные свойства сходящихся последовательностей
Приведем основные свойства сходящихся последовательностей, которые в курсе высшей математики сформулированы в виде теорем.
1. Если все элементы бесконечно малой последовательности {хп} равны одному и тому же числу с, то с = 0.
2. Сходящаяся последовательность имеет только один предел.
3. Сходящаяся последовательность ограничена.
4. Сумма (разность) сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел которой равен сумме (разности) пределов последовательностей {xп} и {yп}.
5. Произведение сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей {хп} и {уп}.
6. Частное двух сходящихся последовательностей {хп} и {уп} при условии, что предел последовательности {уп} отличен от нуля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей {хп} и {yп}.
7. Если элементы сходящейся последовательности {хn} удовлетворяют неравенству xп ≥ b (хп ≤ b) начиная с некоторого номера, то и предел а этой последовательности удовлетворяет неравенству а ≥ b (а ≤ b).
8. Произведение бесконечно малой последовательности на ограниченную последовательность или на число есть бесконечно малая последовательность.
9. Произведение конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.
Рассмотрим применение этих свойств на примерах.
Пример
3. Найти
предел
.
Решение.
При n
числитель и знаменатель дроби стремятся
к бесконечности, т.е. применить сразу
теорему о пределе частного нельзя, так
как она предполагает существование
конечных пределов последовательностей.
Преобразуем данную последовательность,
разделив числитель и знаменатель на
n2.
Применяя затем теоремы о пределе
частного, пределе суммы и снова пределе
частного, последовательно находим
Пример 4.
Найти предел последовательности {xп}
=
при п
.
Решение. Здесь, как и в предыдущем примере, числитель и знаменатель не имеют конечных пределов, и потому сначала необходимо выполнить соответствующие преобразования. Поделив числитель и знаменатель на n, получаем
Поскольку в числителе стоит произведение бесконечно малой последовательности на ограниченную последовательность, то в силу свойства 8 окончательно получаем
Пример 5.
Найти предел последовательности {хп}
=
при п
.
Решение.
Здесь применить непосредственно теорему
о пределе суммы (разности) последовательностей
нельзя, так как не существует конечных
пределов слагаемых в формуле для {хп}.
Умножим и разделим формулу для {хn}
на сопряженное выражение
:
Число е
Рассмотрим последовательность {хп}, общий член которой выражается формулой
В курсе математического анализа доказывается, что эта последовательность монотонно возрастает и имеет предел. Этот предел называют числом е. Следовательно, по определению
Число е играет большую роль в математике. Далее будет рассмотрен способ его вычисления с любой требуемой точностью. Отметим здесь, что число е является иррациональным; его приближенное значение равно е = 2,7182818... .