- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
15.5. Однородные системы линейных уравнений
Определение 1. Система линейных уравнений называется однородной, если во всех ее уравнениях свободные члены равны нулю.
В общем случае однородная система (или система однородных уравнений) имеет вид
Однородная система уравнений всегда совместна. Действительно, набор значений неизвестных xi = 0 (i = 1, 2,... , п) удовлетворяет всем уравнениям системы. Это решение однородной системы называется нулевым, или тривиальным.
Решение системы однородных уравнений
Вопрос о существовании ненулевого решения однородной системы линейных уравнений (15.14) разрешает следующая теорема.
ТЕОРЕМА 3. Однородная система имеет ненулевое решение тогда и только тогда, когда ранг этой системы меньше числа ее неизвестных.
Из этой теоремы вытекают два важных следствия.
Следствие 1. Если число уравнений однородной системы меньше числа ее неизвестных, то эта система имеет ненулевое решение.
Следствие 2. Если в однородной системе число уравнений равно числу неизвестных, то она имеет ненулевое решение тогда и только тогда, когда определитель матрицы системы равен нулю.
Фундаментальная система решений
Решения однородной
системы обладают следующими свойствами.
Если вектор
= (α1,
α2,...
,αn)
является решением системы (15.14), то и для
любого числа k
вектор k
= (kα1,
kα2,...,
kαn)
будет решением этой системы. Если
решением системы (15.14) является вектор
= (γ1,
γ2,
... ,γn),
то сумма
+
также будет решением этой системы.
Отсюда следует, что любая
линейная комбинация решений однородной
системы также является решением этой
системы.
Как мы знаем из п. 12.2, всякая система n-мерных векторов, состоящая более чем из п векторов, является линейно зависимой. Таким образом, из множества векторов-решений однородной системы (15.14) можно выбрать базис, т.е. любой вектор-решение данной системы будет линейной комбинацией векторов этого базиса. Любой такой базис называется фундаментальной системой решений однородной системы линейных уравнений. Справедлива следующая теорема, которую мы приводим без доказательства.
ТЕОРЕМА
4. Если
ранг r системы однородных уравнений
(15.14) меньше
числа неизвестных п, то всякая
фундаментальная система решений системы
(15.14) состоит
из п - r
решений.
Укажем теперь способ нахождения фундаментальной системы решений (ФСР). Пусть система однородных уравнений (15.14) имеет ранг r < п. Тогда, как следует из правил Крамера, базисные неизвестные этой системы x1, x2, … xr линейно выражаются через свободные переменные xr+1, xr+2 , ..., xп:
Выделим частные решения однородной системы (15.14) по следующему принципу. Для нахождения первого вектора-решения 1 положим xr+1 = 1, xr+2 = xr+3 = ... = xn = 0. Затем находим второе решение 2: принимаем xr+2 = 1, а остальные r - 1 свободных переменных положим нулями. Иными словами, мы последовательно присваиваем каждой свободной переменной единичное значение, положив остальные нулями. Таким образом, фундаментальная система решений в векторной форме с учетом первых r базисных переменных (15.15) имеет вид
ФСР (15.16) является одним из фундаментальных наборов решений однородной системы (15.14).
Пример 1. Найти решение и ФСР системы однородных уравнений
Решение. Будем решать эту систему методом Гаусса. Поскольку число уравнений системы меньше числа неизвестных, считаем х1, x2, х3 базисными неизвестными, а x4, х5, x6 — свободными переменными. Составим расширенную матрицу системы и выполним действия, составляющие прямой ход метода:
Преобразованная расширенная матрица соответствует системе уравнений, которая эквивалентна исходной однородной системе:
Обратный ход метода Гаусса дает значения базисных неизвестных, выраженные через свободные переменные:
Поскольку ранг однородной системы равен трем, то ФСР для нее состоит из трех линейно независимых векторов. По формулам (15.16) при п = 6 и r = 3, беря последовательно для свободных переменных тройки чисел (1, 0, 0), (0, 1, 0) и (0, 0, 1), получаем набор фундаментальных решений:
Характеристическое уравнение
В п. 13.1 было введено определение собственного значения и гобственного вектора матрицы. Пусть — собственный вектор квадратной матрицы А порядка n. Тогда имеет место матричное уравнение
или
где λ — собственное значение матрицы А, а E и — соответственно единичная матрица и нулевой вектор-столбец. Уравнение (15.17) эквивалентно системе однородных уравнений
В уравнениях (15.18) aij — элементы матрицы А, xj — координаты собственного вектора х. Поскольку собственный вектор не является нулевым, то однородная система (15.18) должна иметь ненулевое решение, т.е. в силу следствия 2 (см. выше) определитель этой системы равен нулю:
Определитель системы однородных уравнений (15.18) называется характеристическим многочленом, а уравнение (15.19) — характеристическим уравнением матрицы А.
Уравнение (15.19) имеет степень n относительно неизвестной λ. Его корни являются собственными числами матрицы А. Определив набор этих чисел, для каждого из них можно найти соответствующий собственный вектор как решение однородной системы (15.18).
Пример 2. Найти собственные числа и собственные векторы матрицы
Решение. Характеристическое уравнение для этой матрицы имеет вид
откуда, раскрывая определитель, получаем
Корни этого уравнения суть λ1 = 2, λ2 = 5. Для нахождения собственных векторов подставим найденные собственные значения в систему однородных уравнений (15.18) при n = 2 с соответствующими элементами заданной матрицы А. Собственный вектор, соответствующий собственному значению λ1 = 2, является решением системы
Пo сути дела, это одно уравнение, поскольку определитель системы равен нулю. Полагая x2 = b свободной переменной, получаем первый собственный вектор 1 = (—2b, b) = b (-2, 1). Подстановка второго собственного значения λ2 = 5 приводит к системе уравнений
которая через свободную переменную x2 = с определяет второй собственный вектор матрицы А: 2 = (с, с) = с (1, 1).
Поскольку b и с — произвольные числа, то одному собственному значению может соответствовать несколько собственных векторов разной длины. Например, собственные векторы, соответствующие фундаментальным решениям однородных систем (в данном случае их будет по одному на каждое собственное значение), имеют вид 1 = (-2, 1), 2 = (1, 1).
УПРАЖНЕНИЯ
Решить методом Крамера системы линейных уравнений.
Решить системы линейных уравнений методом Гаусса.
Решить методом обратной матрицы системы уравнений, предварительно вычислив методом Гаусса обратную матрицу.
Найти фундаментальные системы решений однородных систем.
Найти собственные векторы и собственные значения матриц.
