
- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
15.2. Методы решения систем линейных уравнений
Метод обратной матрицы и теорема Крамера
В этом разделе мы рассмотрим частный случай системы (15.1), когда число уравнений равно числу неизвестных, т.е. т = n. Система уравнений имеет вид
Составим квадратную матрицу А порядка n этой системы:
1. В матричной форме система уравнений (15.5) имеет вид
где матрицы Х и В имеют размер n х 1. Пусть матрица системы А является невырожденной, т.е. существует обратная матрица А-1. Умножив обе части этого уравнения слева на А-1, получаем решение системы (15.5) в матричной форме:
Вычисление обратной матрицы по заданной матрице А производится по довольно сложным формулам. В случае когда порядок n матриц А и А-1 достаточно велик, вычисление обратной матрицы может быть очень громоздким.
2. Другой метод решения системы уравнений (15.5) основан на теореме Крамера. Составим определитель матрицы системы А:
который называется также определителем системы. Заменим в этом определителе j-й столбец на столбец свободных членов В, т.е. получим этой заменой другой определитель, который обозначим Δj:
ТЕОРЕМА 2 (правило Крамера). Пусть Δ — определитель матрицы системы А, а Δj — определитель, полученный из определителя Δ заменой j-го столбца столбцом свободных членов В. Тогда если Δ ≠ 0, то система линейных уравнений (15.5) имеет единственное решение, определяемое по формулам
Формулы вычисления неизвестных (15.6) — решения системы (15.5) — носят название формул Крамера.
Пример 1. Найти решение системы уравнений
Решение. Составим и вычислим определители системы Δ и Δj (j = x, y, z):
Определитель системы отличен от нуля, стало быть, она имеет единственное решение, которое вычисляется по формулам (15.6):
Решение системы общего вида
Пусть задана система линейных уравнений общего вида (15.1), где т ≤ n, т.е. число неизвестных не меньше числа уравнений. Представим общий порядок решения этой системы.
1. Необходимо определить совместность системы, т.е. определить сначала ранги матрицы системы А и расширенной матрицы AB. По теореме Кронекера-Капелли если ранги этих матриц не совпадают, то система несовместна и тогда нет смысла ее решать. Если же ранги матриц А и АB равны, то система (15.1) совместна.
Определение 1. Рангом совместной системы линейных алгебраических уравнений называется ранг ее матрицы.
2. Пусть система (15.1) совместна и ранг ее равен r. Выделим в матрице системы (15.2) некоторый базисный минор; предположим, что именно первые r строк матриц А и АB являются базисными. Тогда по теореме о базисном миноре остальные строки матрицы являются линейными комбинациями остальных строк. В свою очередь это означает, что в системе (15.1) первые r уравнений, соответствующие базисным строкам матрицы А, являются базисными, а остальные — их линейными комбинациями. Тогда эти (m — r) уравнений можно удалить из системы, причем в результате указанных элементарных преобразований мы получаем эквивалентную систему:
3. Система (15.7) характерна тем, что ее ранг равен числу уравнений в ней, причем r ≤ n, т.е. ранг не превосходит числа неизвестных. Поэтому возможны два случая: либо r = n, либо r < n. В первом случае система (15.7) имеет квадратную невырожденную матрицу порядка r (см. выше) и, согласно теореме Крамера, существует единственное решение этой системы. Иными словами, если ранг системы равен числу неизвестных, то система имеет единственное решение, т.е. она является определенной.
4. Рассмотрим теперь случай, когда r < п. Перенесем в правые части уравнений (15.7) все слагаемые, содержащие неизвестные xr+1, xr+2, …, xп. Тогда система принимает вид
Неизвестным xr+1, ..., xп можно придавать любые значения, и потому они называются свободными. Неизвестные х1, x2, ..., xr соответствующие базисным столбцам, называются базисными. Из системы (15.8) легко найти выражения базисных неизвестных через свободные, согласно теореме Крамера, рассматривая правые части этих уравнений как элементы столбца свободных членов, содержащие xr+1, xr+2,…, хп. Можно показать, что базисные неизвестные x1, х2, ..., xr линейно выражаются через свободные неизвестные. Поскольку свободные неизвестные могут принимать любые значения, то в случае когда ранг совместной системы меньше числа неизвестных, эта система является неопределенной: она имеет бесчисленное множество решений.
Метод Гаусса
Следует заметить, что как метод обратной матрицы, так и метод Крамера являются очень трудоемкими по количеству вычислительной работы. Оба они требуют порядка n2n! арифметических действий для нахождения решения системы линейных уравнений. При п = 5 это составит около 3000 действий, при п = 10 — около 3,6 ∙ 108 действий. При решении серьезных задач приходится иметь дело с системами уравнений порядка п = 100 и более. При таких масштабах даже суперкомпьютерам потребуется огромное время для вычисления решения. Кроме того, погрешности компьютерного округления чисел приводят к значительным ошибкам в расчетах численного решения систем уравнений большого порядка. Между тем существуют более экономичные методы решения систем линейных уравнений, основанные на предварительном преобразовании расширенной матрицы системы к специальному виду. В частности, одним из них является метод Гаусса, практическую реализацию которого мы приводим ниже.
Рассмотрим систему уравнений общего вида (15.1). Пусть для определенности a11 ≠ 0 (если a11 = 0, то можно переставить на первое место ненулевое слагаемое или начать с другого уравнения). Умножим первое уравнение системы (15.1) на число a21/a11 и затем вычтем его из второго уравнения этой системы. Умножим обе части первого уравнения на число a31/a11 и затем вычтем его из третьего уравнения и так далее, т.е. процесс заключается в последовательном вычитании первого уравнения, умножаемого на числа ai1/a11, из i-го уравнения (i = 2, 3, ... , m). Таким образом, в результате элементарных преобразований мы получим эквивалентную систему, в которой начиная со второго уравнения отсутствуют слагаемые, содержащие неизвестное x1:
где верхний индекс в скобках означает новые коэффициенты, полученные после первого шага. Для удобства записи будем оперировать расширенной матрицей системы, отделяя в ней вертикальной чертой столбец свободных членов. Итак, после первого шага, содержащего (т — 1) элементарных преобразований системы, мы переходим от расширенной матрицы (15.4) исходной системы к расширенной матрице
Второй шаг
заключается в том, что теперь второе
уравнение системы (15.7) или вторая строка
матрицы (15.8) используется для аналогичных
элементарных преобразований строк с
третьей по m-ю:
эта строка последовательно умножается
на число
и
вычитается из i-й
строки (i
= 3, 4, ... ,m).
В результате этих (m
- 2) элементарных преобразований получаем
новую расширенную матрицу, соответствующую
новой эквивалентной системе уравнений.
Эта матрица имеет вид
где верхний индекс
означает новые коэффициенты. В случае
если элемент
= 0, то второе уравнение можно поменять
местами с другим уравнением, у которого
элемент
≠ 0.
Продолжим этот процесс аналогичным образом (т.е. на 3-м шаге преобразуются строки с 4-й по т-ю, на 4-м шаге — строки с 5-й по m-ю и т.д.) до тех пор, пока не дойдем до последней m-й строки. После (r - 1)-го шага процесса последовательного исключения неизвестных мы получим следующую расширенную матрицу:
Последние (m - r) строк этой матрицы соответствуют уравнениям эквивалентной системы уравнений
Эти уравнения
могут появиться, если соответствующие
уравнения исходной системы (15.1)
представляют собой линейные комбинации
других уравнений этой системы, о чем
говорилось в п. 15.1. Здесь мы не исследовали
заранее систему (15.1) на совместность;
поэтому если эта система несовместна,
то хотя бы одно из чисел
,
,...,
не равно нулю. Таким образом, метод
Гаусса позволяет на определенном шаге
установить возможную несовместность
исходной системы линейных уравнений
или выявить и удалить уравнения,
являющиеся линейными комбинациями
других уравнений системы (15.1), если она
совместна.
Пусть система (15.1) совместна, тогда все правые части уравнений (15.10) равны нулю, и после удаления нулевых уравнений в эквивалентной системе и нулевых строк в расширенной матрице получаем матрицу специфического ступенчатого вида, ранг которой равен r. Все элементы этой матрицы, стоящие слева или ниже элементов аij, равны нулю:
Эта расширенная матрица соответствует системе уравнений ранга r, которая имеет вид
Система уравнений (15.12) уже полностью подготовлена к нахождению решения, процесс которого осуществляется снизу вверх, т.е. от последнего уравнения к первому. Переход от системы (15.1) к эквивалентной ей системе (15.12) называется прямым ходом, а нахождение неизвестных из системы (15.12) — обратным ходом метода Гаусса. Далее последовательность действий аналогична изложенной выше.
1. Если r = n, то система (15.12) имеет вид
Поднимаясь снизу вверх, последовательно находим (обратный ход метода Гаусса):
— из последнего
r-го
уравнения неизвестное xr
=
;
— из (r - 1)-го уравнения неизвестное xr-1 путем подстановки в это уравнение уже найденного неизвестного xr;
— из i-го уравнения неизвестное xi при подстановке в него найденных величин xr, xr-1, ..., xi-1;
— и так далее до первого уравнения, из которого при подстановке в него уже найденных величин xr, xr-1 , ..., x2 находим х1.
2. Ранг системы уравнений (15.12) меньше n. В этом случае, как и ранее, объявляем неизвестные xr+1, xr+2, …, xп, свободными и формируем правые части уравнений (15.12), оставляя в левых частях слагаемые, содержащие базисные переменные x1, x2, ..., xr:
Решение этой системы находится обратным ходом метода; теперь базисные неизвестные зависят от свободных неизвестных, которые могут принимать любые значения, а потому система (15.1) имеет бесчисленное множество решений.
Рассмотрим примеры решения систем линейных уравнений методом Гаусса.
Пример 2. Пример 1 п. 15.2.
Решение. Выпишем расширенную матрицу этой системы; справа в скобках укажем числа, на которые умножается соответствующая строка матрицы для того, чтобы сложить ее с нижними строками. Горизонтальными стрелками показаны переходы к расширенным матрицам эквивалентных систем. Первую строку расширенной матрицы исходной системы умножаем последовательно на (-2) и (-1) и прибавляем ее соответственно к 2-й и 3-й строкам этой матрицы. После первого шага, состоящего в "обнулении" первого столбца согласно формуле (15.9), получаем (номера шагов показаны перед стрелками перехода)
Второй шаг прямого хода метода Гаусса состоит в операциях с преобразованной расширенной матрицей: прибавляем вторую строку, умноженную на (-3), к 3-й строке:
Последний вид расширенной матрицы является конечным этапом прямого хода метода (см. формулу (15.13)), после чего приступаем к обратному ходу, т.е. находим неизвестные, начиная с последнего. Полученная расширенная матрица соответствует системе уравнений
которая эквивалентна исходной системе. Отсюда последовательно находим: z = -1/2, у = 0,х = 1- 0 - (-1/2) = 3/2.
Пример 3. Решить методом Гаусса систему линейных уравнений
Решение. Составим расширенную матрицу этой системы, после чего выполним соответствующие шаги прямого хода метода Гаусса. Имеем
Последняя нулевая строка в расширенной матрице, полученной после 3-го шага, появилась из-за того, что в исходной системе четвертое уравнение является суммой 1-го и 3-го уравнений. Система совместная, и после удаления нулевой строки заключительный вид расширенной матрицы соответствует системе трех уравнений с четырьмя неизвестными (ранг системы меньше числа неизвестных). Полагая x4 свободной переменной, получаем
Из этой системы обратным ходом метода Гаусса находим
Данная система уравнений имеет бесчисленное множество решений, поскольку x4 может принимать любые значения.