Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Красс Основы математики и ее приложения в эконо...docx
Скачиваний:
10
Добавлен:
01.07.2025
Размер:
10.89 Mб
Скачать

15.1. Основные понятия

Общий вид и свойства системы уравнений

Система т линейных уравнений с п неизвестными (переменными) x1, x2, ..., xп имеет вид

Здесь aij и bi — произвольные числа (i = 1, 2,..., m; j = 1, 2, ..., n), которые называются соответственно коэффициентами при неизвестных и свободными членами уравнений (15.1). Первый индекс у коэффициентов при неизвестных означает номер уравнения, второй индекс соответствует номеру неизвестного xi.

Решением системы уравнений (15.1) называется набор п чисел x1 = α1, x2 = α2, … , xn = αn, при подстановке которых в эту систему каждое уравнение данной системы превращается в тождество.

Система уравнений (15.1) называется совместной, если она имеет хотя бы одно решение; если система не имеет решений, она называется несовместной. Совместная система уравнений имеет либо одно решение, и в таком случае она называется определенной, либо, если у нее больше одного решения, она называется неопределенной.

Системы уравнений вида (15.1) называются эквивалентными, если они имеют одно и то же множество решений. Элементарные преобразования исходной системы приводят к эквивалентной системе. К элементарным преобразованиям относятся:

  • вычеркивание уравнения 0x1 + 0x2 + ... + 0хn = 0нулевой строки;

  • перестановка уравнений или слагаемых aijxj в уравнениях;

  • прибавление к обеим частям одного уравнения соответственно обеих частей другого уравнения этой системы, умноженного на любое действительное число;

  • удаление уравнений, являющихся линейными комбинациями других уравнений системы.

Последнее свойство вытекает из третьего свойства: если какое-либо уравнение представляет собой линейную комбинацию других уравнений, то из него можно сформировать нулевую строку.

Матричная форма системы уравнений

Сведем коэффициенты при неизвестных в системе уравнений (15.1) в матрицу

Эта матрица состоит из m строк и п столбцов и называется матрицей системы. Введем в рассмотрение две матрицы-столбца: матрицу неизвестных Х и матрицу свободных членов В:

Х и В представляют собой векторы-столбцы, однако в целях единого подхода в рамках матричной алгебры удобнее трактовать их именно как матрицы, состоящие соответственно из п и m строк и одного столбца.

Тогда систему линейных уравнений (15.1) можно записать в матричной форме, поскольку размер матрицы А равен т х n, а размер Х — n х 1 и, значит, произведение этих матриц имеет смысл:

Произведение матриц АХ является, как и В, матрицей-столбцом размером т х 1, состоящей из левых частей уравнений системы (15.1). Все уравнения этой системы вытекают из уравнения (15.3) в силу определения равенства двух матриц (п. 13.1).

Введем в рассмотрение еще одну матрицу; дополним матрицу системы А столбцом свободных членов и получим новую матрицу размером т х (n + 1):

Матрица АВ называется расширенной матрицей системы. Эта матрица играет важную роль в вопросе о разрешимости системы уравнений.

ТЕОРЕМА 1 (Кронекера-Капелли, критерий совместности системы). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы.

Доказательство этой теоремы мы не приводим.