- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
13.2. Обратная матрица
Ранг матрицы
Выше уже говорилось, что матрицы размера т х п можно рассматривать как системы, состоящие из m n-мерных векторов (или из п m-мерных векторов). Поскольку любая система векторов характеризуется рангом (п. 12.2), то естественно встает вопрос о такой же характеристике и для матриц. Так как здесь имеют место две совокупности векторов — векторы-строки и векторы-столбцы, то у матрицы, вообще говоря, два ранга — строчный и столбцовый. Ответ на вопрос об их равноправии дает следующая теорема.
ТЕОРЕМА 1. Строчный и столбцовый ранги любой матрицы равны.
Доказательство этой теоремы мы опускаем.
Стало быть, ранг любой матрицы размера т х п можно искать как ранг одной из двух систем векторов: либо т векторов-строк, либо п векторов-столбцов. Как следует из п. 12.2, для прямоугольной матрицы максимальный ранг r = min (m, n). Для квадратной матрицы размером п х n ее максимальный ранг не может превышать п: r ≤ п.
Понятие обратной матрицы
Понятие обратной матрицы распространяется только на квадратные матрицы, поэтому здесь и далее мы будем иметь дело с матрицами порядка п.
Определение 1. Матрица порядка п называется вырожденной, если ее ранг r < п.
Определение 2. Матрица А-1 называется обратной по отношению к матрице А, если их произведение равно единичной матрице:
Несколько забегая вперед, отметим, что для вырожденной матрицы не существует обратной матрицы. Иными словами, если для некоторой матрицы порядка п ее ранг r < п, то для нее не существует обратной матрицы.
УПРАЖНЕНИЯ
13.1. Найти матрицу С = 2А - В, где
13.2. Даны следующие матрицы:
Найти: а) все произведения матриц, которые имеют смысл; б) соответствующие транспонированные матрицы; в) матрицу 2G – С2, г) матрицу С3.
13.3.
Дана матрица
.
Проверить непосредственным вычислением,
какие из данных ниже векторов являются
собственными векторами этой матрицы,
и указать соответствующие собственные
значения:
Глава 14. Определители
14.1. Операции над определителями и основные свойства
Понятие определителя
Любой квадратной матрице А порядка n ставится в соответствие по определенному закону некоторое число, называемое определителем, или детерминантом, n-го порядка этой матрицы. Начнем с определителей второго и третьего порядков.
Пусть дана матрица
тогда ее определитель второго порядка вычисляется по формуле
Правило вычисления определителя второго порядка очевидно: из произведения элементов на главной диагонали вычитается произведение элементов на второй диагонали матрицы А. Нетрудно видеть, что формула (14.1) представляет собой алгебраическую сумму двух попарных произведений элементов матрицы А, стоящих в разных строках и разных столбцах.
В дальнейшем мы не будем приводить матрицу, для которой вычисляется определитель, так как в записи определителя содержатся все элементы соответствующей матрицы.
Определитель третьего порядка вычисляется по формуле
Правило вычисления определителя третьего порядка следующее. Это алгебраическая сумма шести тройных произведений элементов, стоящих в разных строках и разных столбцах; со знаком плюс берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников, чьи основания параллельны главной диагонали; со знаком минус — произведения, сомножители которых стоят на не главной диагонали и в вершинах треугольников с основаниями, параллельными этой диагонали (рис. 14). Заметим, что каждое слагаемое в формуле (14.2) содержит по одному элементу из каждой строки и каждого столбца соответствующей матрицы.
Рассмотрим определитель n-го порядка
Теперь с учетом подмеченных выше закономерностей перейдем к определению для общего случая.
Определение 1. Определителем матрицы А n-го порядка называется алгебраическая сумма n! произведений n-го порядка элементов этой матрицы, причем в каждое произведение входит по одному элементу из каждой строки и каждого столбца данной матрицы.
Основные свойства определителей
Из данного выше общего определения следуют основные свойства определителей.
1. Если некоторая строка или столбец определителя состоит из нулей, то определитель равен нулю.
Действительно, согласно общему определению, в каждое из n! слагаемых обязательно войдет сомножителем элемент нулевой строки (нулевого столбца).
2. При перестановке двух строк (столбцов) определитель меняет знак.
Это свойство легко проверяется на определителях второго и третьего порядков.
3. Определитель, содержащий две одинаковые строки (два одинаковых столбца), равен нулю.
Действительно, поменяв местами эти строки, получаем Δn = -Δn откуда и следует, что Δn = 0.
4. Общий множитель любой строки (столбца) можно вынести за знак определителя.
5. Если каждый элемент некоторой строки (столбца) определителя Δn представлен в виде суммы двух слагаемых, то этот определитель равен сумме двух определителей, в каждом из которых: а) все строки (столбцы), за исключением указанной строки (столбца), совпадают с аналогичными строками (столбцами) определителя Δn; б) на месте указанной строки (столбца) первый определитель содержит первые слагаемые, а второй определитель — вторые слагаемые данной строки (столбца) определителя Δn.
Поясним это свойство на примере определителя третьего порядка:
6. Определитель не изменится, если к элементам любой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на любое число.
Это свойство является следствием свойств 3-5.
7. При транспонировании матрицы определитель не меняется.
Из перечисленных свойств следует, что определитель равен нулю, если по крайней мере одна из его строк (столбцов) является линейной комбинацией каких-либо других его строк (столбцов). Отсюда вытекает необходимое и достаточное условие равенства нулю определителя. Определитель равен нулю тогда и только тогда, когда его строки (столбцы) линейно зависимы.
Миноры и алгебраические дополнения
Рассмотрим определитель n-го порядка (14.3). Выделим в нем какой-либо элемент аij и вычеркнем i-ю строку и j-й столбец, на пересечении которых расположен этот элемент. Полученный определитель (n - 1)-го порядка называется минором Mij элемента aij определителя Δn.
Пример 1. Найти минор М32 определителя четвертого порядка
Решение. Минор М32 элемента a32 получается вычеркиванием из данного определителя 3-й строки и 2-го столбца. Полученный определитель 3-го порядка равен
Определение 2. Алгебраическим дополнением элемента aij определителя (14.3) называется число
Так, для приведенного выше примера алгебраическое дополнение равно
Миноры и алгебраические дополнения играют важную роль в алгебре и ее приложениях. Одним из таких применений является основополагающая теорема о способе вычисления определителей.
ТЕОРЕМА 1. Определитель равен сумме произведений элементов любой строки на их алгебраические дополнения:
Формула (14.4) называется разложением определителя по i-й строке. Доказательство этой теоремы мы опускаем. Аналогичное утверждение имеет место и для разложения определителя по любому столбцу.
Формула (14.4) сводит вычисление определителя n-го порядка к вычислению n определителей (n - 1)-го порядка. Зная формулу (14.2) вычисления определителя 3-го порядка, мы, например, можем найти определитель 4-го порядка путем разложения его на сумму алгебраических дополнений по формуле (14.4).
Пример 2. Вычислить определитель 4-го порядка
Решение. В принципе, разложить определитель можно по любой строке (столбцу), согласно формуле (14.4). Однако объем вычислений можно существенно уменьшить, если выбрать такую строку (столбец), в которой побольше элементов равно нулю. Наиболее подходящей в нашем случае является вторая строка. Разложение по ней определителя имеет вил
