
- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
Глава 13. Матрицы
13.1. Матрицы и операции над ними Понятие матрицы
Определение 1. Прямоугольная таблица чисел вида
называется матрицей. Здесь aij — действительные числа (i = 1, 2,..., m, j = 1, 2, ..., n), называемые элементами матрицы, i и j — соответственно индексы строки и столбца. При этом произведение m х n числа строк на число столбцов называют размером матрицы А. Часто матрицу (13.1) записывают в сокращенном виде:
Матрица, все элементы которой равны нулю, называется нулевой матрицей.
В том случае, когда m = n (число строк равно числу столбцов):
матрица А называется квадратной.
Упорядоченная совокупность элементов a11, a22,. …, апп называется главной диагональю квадратной матрицы. Квадратная матрица называется диагональной, если ее элементы удовлетворяют условию
т.е. ненулевыми могут быть только элементы главной диагонали; матрица в этом случае имеет вид
Единичной матрицей называется диагональная матрица, у которой все элементы главной диагонали равны единице:
Определение 2. Две матрицы А и В называются равными (А = В), если они имеют одинаковые размеры и их соответствующие элементы равны: aij = bij , i = 1, 2,..., m, j = 1, 2, .... n.
Линейные операции над матрицами
1. Сумма матриц. Суммой матриц А и В одинакового размера называется матрица С того же размера, каждый элемент которой равен сумме соответствующих элементов матриц А и В. Представим это в сокращенной записи. Пусть
Тогда сумма этих матриц С = А + В имеет вид
Пример 1. Пусть даны матрицы А и В:
Тогда их суммой, согласно определению, является матрица
2. Умножение матрицы на действительное число. Произведением матрицы А на действительное число α называется матрица, каждый элемент которой получен умножением соответствующего элемента матрицы А на число α.
Пример 2. Пусть даны матрица А и число α:
Тогда произведением матрицы А на число является матрица
3. Приведем свойства операций суммирования матриц и произведения матрицы на число, непосредственно вытекающие из определения этих операций. Пусть А, В и С — матрицы, имеющие одинаковый размер, а α и β — некоторые действительные числа. Тогда:
1) А + В = В + А,
2) (А + В) + С = А + (В + С),
3) α(А + В) =αА + αВ,
4) (α + β) A = αA + βA,
5) (αβ)А = (αA)β,
6) A + О = А, где О — нулевая матрица,
7) 0А = О.
Транспонирование матриц
Транспонированием матрицы называется замена строк матрицы на ее столбцы с сохранением их порядка (или, что то же самое, замена столбцов матрицы на ее строки). Пусть дана исходная матрица А:
Тогда, согласно определению, транспонированная матрица А' имеет вид
Сокращенная форма записи операции транспонирования матрицы:
Пример 3. Пусть даны матрицы А и В:
Тогда соответствующие транспонированные матрицы имеют вид
Нетрудно заметить две закономерности операции транспонирования матриц.
1. Дважды транспонированная матрица равна исходной матрице:
2. При транспонировании квадратных матриц элементы, находящиеся на главной диагонали, не меняют своих позиций, т.е. главная диагональ квадратной матрицы не меняется при транспонировании.
Важную роль в алгебре и ее приложениях играют симметрические матрицы — квадратные матрицы, у которых элементы, симметричные относительно главной диагонали, равны, т.е. aij = aji. Транспонирование таких матриц не меняет их вида, так что равенство
также можно полагать определением симметрической матрицы.
Умножение матриц
1. Умножение матриц — это специфическая операция, составляющая основу алгебры матриц. Строки и столбцы матриц можно рассматривать как векторы-строки и векторы-столбцы соответствующих размерностей: иными словами, любую матрицу можно интерпретировать как совокупность векторов-строк или векторов-столбцов.
Пусть даны матрица А размером т х п и матрица В размером п х k. Будем рассматривать матрицу А как совокупность т векторов-строк i размерности п каждый, а матрицу В — как совокупность k векторов-столбцов j, каждый из которых содержит по п координат:
Векторы-строки матрицы А и векторы-столбцы матрицы В показаны в записи этих матриц (13.3). Длина строки матрицы А равна высоте столбца матрицы В, и потому скалярное произведение этих векторов имеет смысл.
Определение 3. Произведением матриц А и В называется матрица С, элементы которой cij равны скалярным произведениям векторов-строк i матрицы А на векторы-столбцы j матрицы В:
Произведение
матриц А
и В —
матрица С —
имеет размер т
х k,
поскольку длина п
векторов-строк и векторов-столбцов
исчезает при суммировании произведений
координат этих векторов в их скалярных
произведениях, как показано в формулах
(13.4). Таким образом, для вычисления
элементов первой строки матрицы С
необходимо последовательно получить
скалярные произведения первой строки
матрицы А
на все столбцы матрицы В;
вторая строка матрицы С
получается как скалярные произведения
второй вектор-строки матрицы А
на все
векторы-столбцы матрицы В
и так далее. Для удобства запоминания
размера произведения матриц нужно
перемножить отношения размеров
матриц-сомножителей:
,
т.е. размер матрицы С
равен произведению оставшихся в отношении
чисел: т
х k.
В операции умножения матриц есть характерная особенность: произведение матриц А и В имеет смысл, если число столбцов в А равно числу строк в В. Тогда если А и В — прямоугольные матрицы, то произведение В и А уже не будет иметь смысла, так как в скалярных произведениях, формирующих элементы соответствующей матрицы, должны участвовать векторы с одинаковым числом координат.
Если матрицы А и В квадратные размером n х n, то имеет смысл как произведение матриц АВ, так и произведение матриц BA, причем размер этих матриц такой же, как и у исходных сомножителей. При этом в общем случае перемножения матриц правило перестановочности не соблюдается, т.е. АВ ≠ ВА.
Рассмотрим примеры на умножение матриц.
Решение. Поскольку число столбцов матрицы А равно числу строк матрицы В, то произведение матриц АВ имеет смысл. По формулам (13.4) получаем в произведении матрицу размером 3 х 2:
Произведение ВА не имеет смысла, так как число столбцов матрицы В не совпадает с числом строк матрицы А.
Решение. Здесь мы найдем произведения данных матриц АВ и ВА:
Как видно из результата, матрица произведения зависит от порядка расположения матриц в произведении. В обоих случаях произведения матриц имеют тот же размер, что и у исходных сомножителей: 2 х 2.
Решение. В данном случае матрица В представляет собой вектор-столбец, т.е. матрицу, у которой три строки и один столбец. Вообще, векторы — это частные случаи матриц: вектор-строка длины п представляет собой матрицу с одной строкой и п столбцами, а вектор-столбец высоты n — матрицу с n строками и одним столбцом. Размеры данных матриц соответственно 2 х 3 и 3 х 1, так что произведение этих матриц определено. Имеем
В произведении получена матрица размером 2 х 1 или вектор-столбец высоты 2.
Решение. Путем последовательного умножения матриц находим
2. Свойства произведения матриц. Пусть А, В и С — матрицы соответствующих размеров (чтобы произведения матриц были определены), а α — действительное число. Тогда следующие свойства произведения матриц имеют место:
1) (АВ)С = А(ВС),
2) (А + В)С = AC + ВС,
3) А(В + С) = АВ + АС,
4) α(АВ) = (αА)В = А(αВ).
В п. 1 этого раздела введено понятие единичной матрицы Е. Нетрудно убедиться, что в алгебре матриц она играет роль единицы, т.е. можно отметить еще два свойства, связанные с умножением на эту матрицу слева и справа в случае квадратных матриц:
5) АЕ = А,
6) ЕА = А.
Иными словами, произведение любой матрицы на единичную матрицу, если оно имеет смысл, не меняет исходную матрицу.
Собственные значения и собственные векторы матрицы
Будем рассматривать квадратные матрицы размером п х п, или, что то же самое, матрицы порядка п.
При умножении матрицы порядка п на n-мерный вектор в произведении получается n-мерный вектор:
Для любой матрицы может существовать набор особых векторов, таких, что произведение матрицы на вектор из такого набора равносильно умножению этого вектора на определенное вещественное число (вообще говоря разное для каждого вектора).
Определение 4.
Число λ
называется собственным значением
матрицы А
порядка п,
если существует такой ненулевой вектор
Rn,
что выполняется равенство
При этом вектор
называется собственным вектором матрицы
А,
а λ
— собственным значением матрицы А,
соответствующим вектору
.
Иными словами, умножение матрицы на ее собственный вектор равносильно удлинению этого вектора в |λ| раз, если |λ| > 1 (или сжатию при |λ| < 1). Если λ = 1, умножение матрицы на соответствующий собственный вектор не меняет его. Уравнение (13.5) представлено в матричной форме. Группируя все слагаемые этого уравнения в левой части, перепишем его в более удобном виде:
где Е и — соответственно единичная матрица и нулевой вектор.
Если aij — элементы матрицы А, то характеристическая матрица А — λЕ, согласно определениям умножения матрицы на число и суммы матриц, имеет вид
Проблема отыскания собственных значений и собственных векторов матриц составляет основу специального раздела алгебры; в дальнейшем мы еще вернемся к этому вопросу. Здесь лишь отметим один важный результат алгебры матриц: для симметрических матриц (13.2) все п собственных значений являются действительными числами.