- •Основы математики и ее приложения в экономическом образовании
- •Предисловие
- •Введение
- •1.2. Вещественные числа и их свойства
- •1.3. Числовая прямая (числовая ось) и множества на ней
- •1.4. Грани числовых множеств
- •1.5. Абсолютная величина числа
- •Глава 2. Предел последовательности
- •2.1. Числовые последовательности
- •2.2 Применение в экономике
- •Глава 3. Функции одной переменной
- •3.1. Понятие функции
- •3.2. Предел функции
- •3.3. Теоремы о пределах функций
- •3.4. Два замечательных предела
- •3.5. Бесконечно малые и бесконечно большие функции
- •3.6. Понятие непрерывности функции
- •3.7. Непрерывность элементарных функций
- •3.8. Понятие сложной функции
- •3.9. Элементы аналитической геометрии на плоскости
- •Глава 4. Основы дифференциального исчисления
- •4.1. Понятие производной
- •4.2. Понятие дифференциала функции
- •4.3. Правила дифференцирования суммы, произведения и частного
- •4.4. Таблица производных простейших элементарных функций
- •4.5. Дифференцирование сложной функции
- •4.6. Понятие производной n-го порядка
- •Глава 5. Применение производных в исследовании функций
- •5.L. Раскрытие неопределенностей
- •5.2. Формула Маклорена
- •5.3. Исследование функций и построение графиков
- •5.4. Применение в экономике
- •Глава 6. Неопределенный интеграл
- •6.1. Первообразная и неопределенный интеграл
- •6.2. Основные свойства неопределенного интеграла
- •6.3. Таблица основных неопределенных интегралов
- •6.4. Основные методы интегрирования
- •Глава 7. Определенный интеграл
- •7.1. Условия существования определенного интеграла
- •7.2. Основные свойства определенного интеграла
- •7.3. Основная формула интегрального исчисления
- •7.4. Основные правила интегрирования
- •7.5. Геометрические приложения определенного интеграла
- •7.6. Некоторые приложения в экономике
- •7.7. Несобственные интегралы
- •Глава 8. Функции нескольких переменных
- •8.1. Евклидово пространство Em
- •8.2. Множества точек евклидова пространства Еm
- •8.3. Частные производные функции нескольких переменных
- •8.4. Локальный экстремум функции нескольких переменных
- •8.5. Применение в задачах экономики
- •Часть 2. Элементы теории обыкновенных дифференциальных уравнений
- •Глава 9. Дифференциальные уравнения первого порядка
- •9.1. Основные понятия
- •9.2. Уравнения с разделяющимися переменными
- •9.3. Неполные уравнения
- •9.4. Линейные уравнения первого порядка
- •Глава 10. Дифференциальные уравнения второго порядка
- •10.1. Основные понятия теории
- •10.2. Уравнения, допускающие понижение порядка
- •10.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •10.4. Краевая задача для дифференциального уравнения второго порядка
- •Глава 11. Аппарат дифференциальных уравнений в экономике
- •11.1. Дифференциальные уравнения первого порядка
- •11.2. Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)
- •Часть 3. Элементы линейной алгебры Глава 12. Векторы
- •12.1. Векторное пространство
- •12.2. Линейная зависимость векторов
- •12.3. Разложение вектора по базису
- •Глава 13. Матрицы
- •13.1. Матрицы и операции над ними Понятие матрицы
- •13.2. Обратная матрица
- •Глава 14. Определители
- •14.1. Операции над определителями и основные свойства
- •14.2. Ранг матрицы и системы векторов
- •Глава 15. Системы линейных алгебраических уравнений
- •15.1. Основные понятия
- •15.2. Методы решения систем линейных уравнений
- •15.3. Вычисление обратной матрицы методом Гаусса
- •15.4. Геометрическая интерпретация системы линейных уравнений
- •15.5. Однородные системы линейных уравнений
- •Глава 16. Применение элементов линейной алгебры в экономике
- •16.1. Использование алгебры матриц
- •16.2. Модель Леонтьева многоотраслевой экономики
- •16.3. Линейная модель торговли
- •Часть 4. Элементы теории вероятностей Глава 17. Основные положения теории вероятностей
- •17.1. Основные понятия теории вероятностей
- •17.2. Теорема сложения вероятностей
- •17.3. Теорема умножения вероятностей
- •17.4. Обобщения теорем сложения и умножения
- •17.5. Схема независимых испытаний
- •Глава 18. Случайные величины
- •18.1. Случайные величины и законы их распределения
- •18.2. Числовые характеристики дискретных случайных величин
- •18.3. Система двух случайных величин
- •18.4. Непрерывные случайные величины
- •18.5. Основные распределения непрерывных случайных величин
- •18.6. Некоторые элементы математической статистики
- •Раздел II. Основы оптимального управления
- •Часть 5. Элементы линейного программирования
- •Глава 19. Элементы аналитической геометрии в n-мерном пространстве
- •19.1. Основные понятия и определения
- •19.2. Решение систем m линейных неравенств с двумя переменными
- •Глава 20. Графический метод
- •20.1. Постановка задачи
- •20.2. Алгоритм решения задач
- •20.3. Выбор оптимального варианта выпуска изделий
- •20.4. Экономический анализ задач с использованием графического метода
- •Глава 21. Симплексный метод
- •21.1. Общая постановка задачи
- •21.2. Алгоритм симплексного метода
- •21.3. Анализ эффективности использования производственного потенциала предприятия
- •21.4. Альтернативный оптимум
- •Глава 22. Двойственность в линейном программировании
- •22.1. Виды двойственных задач и составление их математических моделей
- •22.2. Основные теоремы двойственности
- •22.3. Решение двойственных задач
- •22.4. Экономический анализ задач с использованием теории двойственности
- •22.5. Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов
- •Глава 23. Транспортная задача
- •23.1. Общая постановка задачи
- •23.2. Нахождение исходного опорного решения
- •23.3. Определение эффективного варианта доставки изделий к потребителю
- •23.4. Проверка найденного опорного решения на оптимальность
- •23.5. Переход от одного опорного решения к другому
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
- •23.8. Открытая транспортная задача
- •23.9. Определение оптимального варианта перевозки грузов с учетом трансформации спроса и предложений
- •23.10. Экономический анализ транспортных задач
- •23.11. Приложение транспортных моделей к решению некоторых экономических задач
- •23.12. Выбор оптимального варианта использования производственного оборудования
- •Глава 24. Целочисленное программирование
- •24.1. Общая формулировка задачи
- •24.2. Графический метод решения задач
- •24.3. Прогнозирование эффективного использования производственных площадей
- •24.4. Метод Гомори
- •Глава 25. Параметрическое линейное программирование
- •25.1. Постановка задачи
- •25.2. Линейное программирование с параметром в целевой функции
- •25.3. Определение диапазона оптимального решения выпуска продукции при изменении условий реализации
- •25.4. Транспортная параметрическая задача
- •25.5. Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог
- •Глава 26. Задача о назначениях
- •26.1. Постановка задачи
- •26.2. Алгоритм решения задачи
- •26.3. Планирование загрузки оборудования с учетом максимальной производительности станков
- •26.4. Выбор инвестиционных проектов в условиях ограниченности финансовых ресурсов
- •Глава 27. Задачи с несколькими целевыми функциями
- •27.1. Формулировка задачи
- •27.2. Математическая модель нахождения компромиссного решения
- •27.3. Определение оптимального выпуска продукции при многокритериальных экономических показателях
- •Часть 6. Элементы оптимального управления Глава 28. Нелинейное программирование
- •28.1. Общая постановка задачи
- •28.2. Графический метод
- •28.3. Дробно-линейное программирование
- •28.4. Метод множителей Лагранжа
- •Глава 29. Динамическое программирование
- •29.1. Постановка задачи
- •29.2. Некоторые экономические задачи, решаемые методами динамического программирования
- •Глава 30. Сетевые модели
- •30.1. Основные понятия сетевой модели
- •30.2. Минимизация сети
- •Часть 7. Принятие решений и элементы планирования Глава 31. Основные понятия теории игр
- •31.1. Графическое решение игр вида (2 X n) и (m X 2)
- •31.2. Решение игр (aij)mxn с помощью линейного программирования
- •31.3. Применение матричных игр в маркетинговых исследованиях
- •31.4. Сведение матричной игры к модели линейного программирования
- •31.5. Игры с "природой"
- •31.6. Определение производственной программы предприятия в условиях риска и неопределенности с использованием матричных игр
- •31.7. "Дерево" решений
- •Глава 32. Элементы системы массового обслуживания (смо)
- •32.1. Формулировка задачи и характеристики смо
- •32.2. Смо с отказами
- •32.3. Смо с неограниченным ожиданием
- •32.4. Смо с ожиданием и с ограниченной длиной очереди
- •32.5. Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания
- •Глава 33. Некоторые модели управления запасами
- •33.1. Общая постановка задачи
- •33.2. Основная модель управления запасами
- •33.3. Модель производственных запасов
- •33.4. Модель запасов, включающая штрафы
- •33.5. Решение экономических задач с использованием моделей управления запасами
- •Часть 8. Практикум
- •2. Задачи на случайные величины
- •Ответы к упражнениям
- •Приложение
- •Литература
- •Глава 32. Элементы системы массового обслуживания (смо) 382
- •Глава 33. Некоторые модели управления запасами 391
- •Часть 8. Практикум 399
11.1. Дифференциальные уравнения первого порядка
Модель естественного роста выпуска
Будем полагать, что некоторая продукция продается по фиксированной цене Р. Обозначим через Q(t) количество продукции, реализованной на момент времени t; тогда на этот момент времени получен доход, равный PQ(t). Пусть часть указанного дохода расходуется на инвестиции в производство реализуемой продукции, т.е.
где m — норма инвестиции — постоянное число, причем 0 < т < 1.
Если исходить из предположения о ненасыщаемости рынка (или о полной реализации производимой продукции), то в результате расширения производства будет получен прирост дохода, часть которого опять будет использована для расширения выпуска продукции. Это приведет к росту скорости выпуска (акселерации), причем скорость выпуска пропорциональна увеличению инвестиций, т.е.
где 1/l — норма акселерации. Подставив в (11.2) формулу (11.1), получим
Дифференциальное уравнение (11.3) представляет собой уравнение первого порядка с разделяющимися переменными. Общее решение этого уравнения имеет вид
где С
— произвольная
постоянная. Пусть в начальный момент
времени t =
t0
зафиксирован (задан) объем выпуска
продукции Q0.
Тогда из этого условия можно выразить
постоянную С:
Q0
= С
,
откуда С
= Q0
.
Отсюда получаем частное решение уравнения
(11.3) — решение задачи Коши для этого
уравнения:
Заметим, что математические модели обладают свойством общности. Так, из результатов биологических опытов следует, что процесс размножения бактерий также описывается уравнением (11.3). Процесс радиоактивного распада подчиняется закономерности, установленной формулой (11.4).
Рост выпуска в условиях конкуренции
В этой модели мы снимем предположение о ненасыщаемости рынка. Пусть Р = Р(Q) — убывающая функция, т.е. с увеличением объема продукции на рынке цена на нее падает: dP/dQ < 0. Теперь из формул (11.1)-(11.3) мы получаем нелинейное дифференциальное уравнение первого порядка относительно Q с разделяющимися переменными:
Поскольку все сомножители в правой части этого уравнения положительны, то Q' > 0, т.е. функция Q(t) возрастающая.
Характер возрастания функции определяется ее второй производной. Из уравнения (11.5) получаем
Это равенство можно преобразовать, введя эластичность спроса
или, так как
<
0, а значит, и Е
< 0,
окончательно получаем
Из уравнения (11.6) следует, что Q" > 0 при эластичном спросе, т.е. когда |Е| > 1, и график функции Q(t) имеет направление выпуклости вниз, что означает прогрессирующий рост. При неэластичном спросе |Е| < 1, и в этом случае Q" < 0 — направление выпуклости функции Q(t) вверх, что означает замедленный рост (насыщение).
Для простоты примем зависимость P(Q) в виде линейной функции
(рис. 11.1). Тогда уравнение (11.5) имеет вид
откуда
Из соотношений (11.7) и (11.8) получаем: Q' = 0 при Q = 0 и при Q = а/b, Q" > 0 при Q < а /(2b) и Q" < 0 при Q > а/(2b); Q = a/(2b) — точка перегиба графика функции Q = Q(t). Приведенный на рис. 11.2 график этой функции (одной из интегральных кривых дифференциального уравнения (11.7)) носит название логистической кривой.
Аналогичные кривые характеризуют и другие процессы, например размножение бактерий в ограниченной среде обитания, динамику эпидемий внутри ограниченной общности биологических организмов и др.
Динамическая модель Кейнса
Рассмотрим простейшую балансовую модель, включающую в себя основные компоненты динамики расходной и доходной частей экономики. Пусть Y(t), E(t), S(t), I(t) — соответственно национальный доход, государственные расходы, потребление и инвестиции. Все эти величины рассматриваются как функции времени t. Тогда справедливы следующие соотношения:
где a(t) — коэффициент склонности к потреблению (0 < а(t) < 1), b(t) — автономное (конечное) потребление, k(t) — норма акселерации. Все функции, входящие в уравнения (11.9), положительны.
Поясним смысл уравнений (11.9). Сумма всех расходов должна быть равной национальному доходу — этот баланс отражен в первом уравнении. Общее потребление состоит из внутреннего потребления некоторой части национального дохода в народном хозяйстве и конечного потребления — эти составляющие показаны во втором уравнении. Наконец, размер инвестиций не может быть произвольным: он определяется произведением нормы акселерации, величина которой характеризуется уровнем технологии и инфраструктуры данного государства, на предельный национальный доход.
Будем полагать, что функции a(t), b(t), k(t) и E(t) заданы — они являются характеристиками функционирования и эволюции данного государства. Требуется найти динамику национального дохода, или Y как функцию времени t.
Подставим выражения для S(t) из второго уравнения и для I(t) из третьего уравнения в первое уравнение. После приведения подобных получаем дифференциальное неоднородное линейное уравнение первого порядка для функции Y(t):
Согласно п. 9.4, существует достаточно сложная формула общего решения этого уравнения. Мы проанализируем более простой случай, полагая основные параметры задачи а, b и k постоянными числами. Тогда уравнение (11.10) упрощается до линейного дифференциального уравнения первого порядка с постоянными коэффициентами:
Как известно, общее решение неоднородного уравнения есть сумма какого-либо его частного решения и общего решения соответствующего однородного уравнения. В качестве частного решения уравнения (11.11) возьмем так называемое равновесное решение, когда Y’ = 0, т.е.
Нетрудно видеть,
что эта величина положительна. Общее
решение однородного уравнения дается
формулой
,
так что общее решение уравнения (11.11)
имеет вид
Интегральные кривые уравнения (11.11) показаны на рис. 11.3. Если в начальный момент времени Y0 < Yp , то С = Y0 — Yp < 0 и кривые уходят вниз от равновесного решения (11.12), т.е. национальный доход со временем падает при заданных параметрах задачи а, b, k и Е, так как показатель экспоненты в (11.13) положителен. Если же Y0 > Yp, то С > 0 и национальный доход растет во времени — интегральные кривые уходят вверх от равновесной прямой Y = Yр.
Согласно классификации п. 9.3, уравнение (11.11) является автономным; точка Y = Yp представляет собой точку неустойчивого равновесия.
Неоклассическая модель роста
Пусть Y = F (K, L) — национальный доход, где F — однородная производственная функция первого порядка (F (tK, tL) = tF (K, L)), К — объем капиталовложений (производственных фондов), L — объем затрат труда. Введем в рассмотрение величину фондовооруженности k = K/L, тогда производительность труда выражается формулой
Целью задачи, рассматриваемой в этом разделе, является описание динамики фондовооруженности или представление ее как функции от времени t. Поскольку любая модель базируется на определенных предпосылках, нам нужно сделать некоторые предположения и ввести ряд определяющих параметров. В данном случае будем полагать, что выполнены следующие предположения.
1. Имеет место естественный прирост во времени трудовых ресурсов:
2. Инвестиции расходуются на увеличение производственных фондов и на амортизацию, т.е.
где β — норма амортизации.
Тогда если l — норма инвестиций, то I = lY = К' + βК, или
Из определения фондовооруженности k вытекает, что
Дифференцируя это равенство по t, имеем
Подставив в это соотношение выражения (11.15) и (11.16), получаем уравнение относительно неизвестной функции k
где функция f(k) определена по формуле (11.14).
Полученное соотношение (11.17) представляет собой нелинейное дифференциальное уравнение первого порядка с разделяющимися переменными (которое является автономным). Выделим стационарное решение этого уравнения; из условия k' = 0 следует, что
т.е. k = const — постоянная величина, являющаяся корнем этого нелинейного алгебраического уравнения.
Рассмотрим
конкретную задачу: для производственной
функции F(K,
L)
=
найти
интегральные кривые уравнения (11.17) и
стационарное решение.
Из (11.14)
следует, что f(k)
=
,
и тогда уравнение (11.17) имеет вид
Стационарное решение этого уравнения следует из равенства
откуда получаем ненулевое частное решение уравнения (11.17): kst = I2/(α + β)2.
Рис. 11.4
Дифференциальное уравнение (11.17) решаем методом разделения переменных:
Интегрируя это уравнение с заменой переменной = z, получаем его общее решение в окончательном виде:
Семейство интегральных кривых сходится сверху и снизу к стационарному решению (рис. 11.4): т.е. k kst при t . Следовательно, при неизменных входных параметрах задачи l, α и β функция фондовооруженности в данном случае устойчиво стремится к стационарному значению независимо от начальных условий. Такая стационарная точка k = kst является точкой устойчивого равновесия.
