Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Красс Основы математики и ее приложения в эконо...docx
Скачиваний:
10
Добавлен:
01.07.2025
Размер:
10.89 Mб
Скачать

3.5. Бесконечно малые и бесконечно большие функции

Определение 1. Функция f(x) называется бесконечно малой функцией (или просто бесконечно малой) в точке x = а, если предел ее в этой точке равен нулю: f(x) = 0.

Аналогично определяются бесконечно малые при х , х ± , х а+ и х а—.

ТЕОРЕМА 6. Алгебраическая сумма и произведение конечного числа бесконечно малых функций в точке а, как и произведение бесконечно малой на ограниченную функцию, являются бесконечно малыми функциями в точке а.

Определение 2. Функция f(x) называется бесконечно большой функцией в точке а (или просто бесконечно большой), если для любой сходящейся к а последовательности n} значений аргумента соответствующая последовательность {f(xn)} значений функции является бесконечно большой.

В этом случае пишут f(x) = ( f(x) = + или f(x) = - ) и говорят, что функция имеет в точке а бесконечный предел (+ или - ). По аналогии с конечными односторонними пределами определены и односторонние бесконечные пределы:

Аналогично определяются бесконечно большие функции при x , x + , x - .

Между бесконечно малыми и бесконечно большими функциями существует та же связь, что и между соответствующими последовательностями, т.е. если α(х) — бесконечно малая функция при х а, то f(x) = 1/α(х) — бесконечно большая функция, и наоборот.

3.6. Понятие непрерывности функции

Понятие непрерывности функции является фундаментальным в математическом анализе. Сформулируем его на языке последовательности. Пусть функция f(x) определена в некоторой окрестности точки а.

Определение 1. Функция f(x) называется непрерывной в точке а, если предел этой функции и ее значение в этой точке равны, т.е.

Так как x = а, то это равенство можно переписать в следующей форме:

Определение 2. Функция f(x) называется непрерывной справа (слева) в точке а, если правый (левый) предел этой функции в точке а равен значению функции в этой точке.

Символическая запись непрерывности функции справа (слева):

Если функция f(x) непрерывна в точке а слева и справа, то она непрерывна в этой точке.

Точки, в которых функция не является непрерывной, называются точками разрыва функции.

Рассмотрим пример точек, в которых функция не является непрерывной.

Пример 1. Функция f(x) = sign x (п. 3.1). Как было показано ранее, в точке х = 0 существуют левый и правый пределы этой функции, равные соответственно —1 и +1. Сама же точка х = 0 является точкой разрыва функции, поскольку пределы слева и справа не равны значению f(0) = 0.

Действия над непрерывными в точке функциями определяет следующая фундаментальная теорема.

ТЕОРЕМА 7. Пусть функции f(x) и g(х) непрерывны в точке а. Тогда функции f(x) ± g(x), f(x)g(x) и f(x)/g(x) также непрерывны в точке а (частное при условии g(a) ≠ 0).