Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Справочный материал. Глава 07 – Физиология сократительных элементов.doc
Скачиваний:
145
Добавлен:
14.06.2014
Размер:
527.87 Кб
Скачать

Мышечное сокращение

Сокращение мышцы происходит при поступлении по аксонам двигательных нейронов к нервно-мышечным синапсам волны возбуждения в виде нервных импульсов (ПД нервных волокон). Это непрямоесокращение(опосредованное нервно-мышечной синаптической передачей). Возможно ипрямоесокращениемышцы. Под ним понимают сокращение групп МВ (мышечные подёргивания, фибрилляции), происходящее при возбуждении любого звена последовательности событийпослесекрециинейромедиатораизтерминалейаксонав нервно-мышечном синапсе. Последовательность этих событий такова: (1) деполяризация постсинаптической мембраны и генерация ПД(2) распространение ПД по плазмолемме МВ(3) передача сигнала в триадах на саркоплазматический ретикулум(4) выброс Ca2+из саркоплазматического ретикулума(5) связывание Ca2+тропонином С тонких нитей(6) взаимодействие тонких и толстых нитей (формирование мостиков), появление тянущего усилия и скольжение нитей относительно друг друга(7) Цикл взаимодействия нитей(8) укорочение саркомеров и сокращение МВ(9) расслабление. Позиции 1–4 рассмотрены выше (см. рис. 7–4 и 7–5 в книге и сопровождающий их текст), а этапы 2–4 представлены на рис. 7–10.

Рис. 7–10. Распространение потенциала действия по сарколемме мышечного волокна и выброс ионов кальция из цистерн саркоплазматического ретикулума

1.ДеполяризацияпостсинаптическоймембраныигенерацияПДрассмотрены выше и в главе 6.

2.Плазмолеммаипотенциалдействия. Локальная деполяризация постсинаптической мембраны приводит к генерации потенциала действия, быстро распространяющегося по всей плазмолемме мышечного волокна (включая Т-трубочки).

 Электромиография— важный диагностический метод — позволяет регистрировать характеристики потенциалов действия.

 Миотония. Уменьшение Cl-проводимости плазмолеммы ведёт к электрической нестабильности мембраны МВ и к развитию миотонии (например, болезни Томсена).

3.Триадыипередачасигналанасаркоплазматическуюсеть. Волна деполяризации по Т-трубочкам проникает до триад. В области триад мембрана Т–трубочек в составе потенциалозависимого кальциевого канала содержитрецепторы дигидропиридина. Деполяризация мембраны Т–трубочек вызывает в структуре рецепторов дигидропиридина конформационные изменения, передающиеся нарецепторы рианодинатерминальных цистерн саркоплазматического ретикулума.

Злокачественнаягипертермияпри наркозе (особенно при использовании тиопентала и галотана) — редкое осложнение (смертность до 70%) при хирургическом вмешательстве. Температура тела быстро поднимается до 43 °С и выше, происходит генерализованный распад мышц (рабдомиолиз). В части случаев найдена мутация гена рианодинового рецептора скелетномышечного типа.

4.СаркоплазматическийретикулумивыбросCa2+. Активациярецепторов рианодина(Ca2+‑канал) приводит к открытию Ca2+‑каналов, Ca2+изкальциевых депопоступает в саркоплазму; концентрация Ca2+в саркоплазме достигает значений, достаточных для связывания этого двухвалентного катиона с тропонином С тонких нитей.

5.СвязываниеCa2+ тонкиминитями. В покое взаимодействие тонких и толстых нитей невозможно, т.к. миозин-связывающие участки F‑актина заблокированы тропомиозином. При высокой концентрации Ca2+эти ионы связываются с тропонином C и вызывают конформационные изменения тропомиозина, приводящие к разблокированию миозин-связывающих участков (рис. 7–11).

Рис. 7–11. Ca2+–зависимый механизм регуляции взаимодействия актина с миозином [11]. В покое миозин-связывающие участки тонкой нити заняты тропомиозином. При сокращении ионы Ca2+ связываются с тропонином С, а тропомиозин открывает миозин-связывающие участки. Головки миозина присоединяются к тонкой нити и вызывают её смещение относительно толстой нити.

6.Взаимодействиетонкихитолстыхнитей. В результате разблокирования миозин-связывающих участков молекул актина головки миозина, несущие продукты гидролиза АТФ (АДФ + Фн), присоединяются к тонкой нити и изменяют свою конформацию, создавая тянущее усилие: — тонкие нити начинают скользить между толстыми (рис. 7–12). За счёт шарнирного участка в области шейки миозина происходитгребковоедвижение, продвигающее тонкую нить к центру сaркомера. В результате происходит скольжение тонких нитей относительно толстых. Затем головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина. Последующий гидролиз АТФ восстанавливает конформированную молекулу миозина, готовую вступить в новый цикл. Такаямодельскользящихнитейбыла предложенаХью Хаксли.

Рис. 7–12. Взаимодействие головки миозина с тонкой нитью и появление тянущего усилия

7.Рабочийцикл. Каждый цикл взаимодействия тонких и толстых нитей имеет несколько стадий (рис. 7–13).

Рис. 7–13. Цикл взаимодействия тонких и толстых нитей [5]. (А) Исходное положение: головка миозина выстоит над толстой нитью (не показана). (Б) Благодаря наличию шарнира между тяжёлым и лёгким меромиозинами, несущая АДФ и Pi головка миозина прикрепляется к актину, происходит поворот головки миозина с одновременным растягиванием эластического компонента S2. (В). Из головки освобождаются АДФ и Фн, а последующая ретракция эластического компонента S2 вызывает тянущее усилие. Затем к головке миозина присоединяется новая молекула АТФ, что приводит к отделению головки миозина от молекулы актина (Г). Гидролиз АТФ возвращает молекулу миозина в исходное положение (А).

8.Укорочениесаркомераисокращениемышечноговолокна. Головка миозина совершает около пяти циклов в секунду. Когда одни головки миозина толстой нити производят тянущее усилие, другие в это время свободны и готовы вступить в очередной цикл. Следующие друг за другомгребковыедвиженияподтягивают тонкие нити к центру сaркомера. Скользящие тонкие нити тянут за собой Z-линии, вызывая сокращение сaркомера. Поскольку в процесс сокращения практически одномоментно вовлечены все саркомеры МВ, происходит его укорочение.

Влияниедлинысаркомерананапряжениемышцы(рис. 7–14). Сопоставление различных длин саркомера показывает, что наибольшее напряжение развивается мышцей при длине саркомера от 2 до 2,2 мкм. Саркомеры такой длины наблюдаются в мышцах, растянутых собственным весом или при небольшой средней нагрузке. В саркомерах размером от 2 до 2,2 мкм филаменты актина полностью перекрывают филаменты миозина. Уменьшение размеров саркомера до 1,65 мкм приводит к снижению напряжения в результате перекрытия филаментами актина друг друга и, следовательно, уменьшения возможности контакта с поперечными мостиками. Большие нагрузки, растягивающие саркомер свыше 2,2 мкм, приводят к падению напряжения, так как в этом случае актиновые филаменты не имеют контакта с поперечными мостиками. Таким образом, мышца развивает максимальное напряжение в условиях полного перекрытия актиновыми филаментами поперечных мостиков миозина.

Рис.7–14.Саркомеррасслабленного(А)исокращённого(Б)мышечноговолокна[11]. При сокращении тонкие нити движутся к центру саркомера, их свободные концы сходятся у М-линии. Вследствие этого уменьшается длина I–дисков и Н-зоны. Длина А–диска не изменяется.

9.Расслабление. Ca2+‑АТФаза сaркоплазматического ретикулумазакачиваетCa2+из сaркоплазмы в цистерны ретикулума, где Ca2+связывается скальсеквестрином. В условиях понижения концентрации Ca2+в саркоплазме тропомиозин закрывает миозин-связывающие участки и препятствует их взаимодействию с миозином. После смерти, когда содержание АТФ в мышечных волокнах снижается вследствие прекращения её синтеза, головки миозина оказываются устойчиво прикреплёнными к тонкой нити. Это состояние трупного окоченения (rigormortis) продолжается, пока не наступит аутолиз, после чего мышцы можно растянуть.

Ca2+‑насососноваактивногопроцессарасслабления. Ионы кальция, высвобожденные из саркоплазматического ретикулума и диффундировавшие к миофибриллам, вызывают сокращение, которое будет продолжаться столь долго, сколь долго высокая концентрация ионов Ca2+будет сохраняться в саркоплазме. Этому препятствует постоянная активность Ca2+насоса, расположенного в стенках саркоплазматического ретикулума и откачивающего с затратой энергии ионы Ca2+обратно в просвет саркоплазматического ретикулума. Ca2+насос повышает концентрацию Ca2+внутри трубочек в 10 000 раз. Дополнительно работе насоса способствует специальный белоккальсеквестрин, связывающий в 40 раз больше ионов Ca2+, чем их находится в ионизированном состоянии. Таким образом, обеспечивается 40-кратное увеличение запасов кальция. Массивное перемещение ионов Ca2+внутрь саркоплазматического ретикулума уменьшает концентрацию Ca2+в саркоплазме до величины 10-7 М и менее. Поэтому, за исключением периода ПД и немедленно сразу после его окончания, концентрация ионов Ca2+- в саркоплазме поддерживается на исключительно низком уровне, и мышца остаётся расслабленной.

Таким образом, при сокращении МВ практически одновременно регистрируются следующие важные характеристики: генерация ПД, выброс ионов кальция в саркоплазму и собственно сокращение (рис. 7–15)

Рис.7–15.Сокращениемышечноговолокна[5]. Последовательное возникновение ПД, пика содержания Ca2+в саркоплазме и развиваемого напряжения при одиночном мышечном сокращении.

Энергетические потребности.

Мышечное сокращение требует значительных энергетических затрат. Основной источник энергии — гидролиз макроэрга АТФ. В митохондриях в процессе цикла трикарбоновых кислот и окислительного фосфорилирования генерируется АТФ. Гликоген запасaется в сaркоплазме в виде включений. Анаэробный гликолиз сопряжён с синтезом АТФ. Креатинфосфокиназа, связанная в области М-линии, катализирует перенос фосфата от фосфокреатина на АДФ с образованием креатина и АТФ. Миоглобин, как и Hb, обратимо связывает кислород. Запасы кислорода необходимы для синтеза АТФ при длительной непрерывной работе мышцы. На один рабочий цикл затрачивается 1 молекула АТФ. В МВ концентрация АТФ равна 4 ммоль/л. Такого запаса энергии достаточно для поддержания сокращения не более 1–2 сек.

 ЗатратыАТФ. Энергия АТФ расходуется на:

 образование поперечных мостиков, осуществляющих продольное скольжение актиновых филаментов (основная часть энергии гидролиза АТФ);

 Ca2+-насос: выкачивание Ca2+из саркоплазмы в саркоплазматический ретикулум после окончания сокращения;

 Na+/K+-насос: перемещение ионов натрия и калия через мембрану МВ для обеспечения соответствующего ионного состава вне- и внутриклеточной среды.

 ВосстановлениеАТФ. Рефосфорилирование АТФ обеспечивается из нескольких источников.

 Креатинфосфат. Первым источником для восстановления АТФ является использование креатинфосфата — вещества, имеющего высокоэнергетические фосфатные связи, подобные связям АТФ. Однако количество креатинфосфата в МВ невелико, всего на 1/5 больше, чем АТФ. Общих запасов энергии АТФ и креатинфосфата в МВ достаточно для развития максимального мышечного сокращения лишь в течение 5–8 сек.

 Гликоген. Вторым источником энергии, который используется в ходе восстановления АТФ и креатинфосфата, является гликоген, запасы которого имеются в МВ. Расщепление гликогена до пировиноградной и молочной кислот сопровождается выделением энергии, которая идёт на превращение АДФ в АТФ. Вновь синтезированный АТФ может использоваться или непосредственно для мышечного сокращения, или в процессе восстановления запасов креатинфосфата. Гликолитический процесс важен в двух аспектах:

 гликолитические реакции могут происходить в отсутствие кислорода, и мышца может сокращаться десятки секунд без снабжения кислородом;

 скорость образования АТФ в ходе гликолиза в два с лишним раза выше, чем скорость образования АТФ из клеточных продуктов в процессе взаимодействия с кислородом. Однако большое количество промежуточных продуктов гликолитического обмена, накапливаемых в МВ, не позволяет гликолизу поддерживать максимальное сокращение более одной минуты.

 Окислительныйметаболизм. Третьим источником энергии является окислительный метаболизм. Более 95% энергии, используемой мышцей в ходе продолжительных, напряжённых сокращений, поступает именно из этого источника. В процессе длительной напряжённой мышечной работы, продолжающейся много часов, большая часть энергии берётся из жиров. Для периода работы от 2 до 4 час более половины энергии поступает за счёт запасов гликогена.

Соседние файлы в предмете Нормальная физиология