Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эконометрика Практикум 2011 год 111.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.24 Mб
Скачать

2. Найдем показатели тесноты связи линейной модели:

Уравнение регрессии всегда дополняется показателем тесно­ты связи. При использовании линейной регрессии в качестве та­кого показателя выступает линейный коэффициент корреляции .

Как известно, линейный коэффициент корреляции находит­ся в границах:

–1 ≤ ≤ 1

Если коэффициент регрессии > 0, то 0 ≤ ≤ 1

Если коэффициент регрессии < 0, то –1 ≤ ≤ 0

Линейный коэффициент корреляции равен:

, (1.2)

, (1.3)

, (1.4)

, (1.5)

, (1.6)

, (1.7)

Вывод: связь между признаками очень высокая обратная, так – 0,9 < < –0,99

Для оценки качества подбора линейной функции рассчиты­вается квадрат линейного коэффициента корреляции назы­ваемый коэффициентом детерминации.

Коэффициент детермина­ции характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

, (1.8)

Соответственно величина характеризует долю диспер­сии , вызванную влиянием остальных факторов, не учтенных в модели.

Коэффициент детерминации –

То есть вариация на 88,92 объясняется вариацией . На долю прочих факторов, не учитываемых в регрессии, приходится 11,08 %.

Величина коэффициента детермина­ции является одним из критериев оценки качества линейной мо­дели. Чем больше доля объясненной вариации, тем соответствен­но меньше роль прочих факторов и, следовательно, линейная мо­дель хорошо аппроксимирует исходные данные, и ею можно воспользоваться для прогноза значений результативного признака.

3.Найдем средний коэффициент эластичности.

Линейный коэффициент корреляции как измеритель тесно­ты линейной связи признаков логически связан не только с ко­эффициентом регрессии , но и с коэффициентом эластичности, который является показателем силы связи, выраженным в про­центах.

При линейной связи признаков и средний коэффици­ент эластичности в целом по совокупности определяется как:

, (1.9)

%

Вывод: увеличение факторного признака на 1 % вызывает снижение результативного признака на 0,591 %.

Задания для самостоятельного решения.

По 10 областям региона известны данные за 2005 г.:

Х – среднемесячная заработная плата одного работающего, тыс.руб.;

У – расходы на покупку продовольственных товаров, % к общему объему расходов.

Требуется:

1. Определить методом наименьших квадратов параметры уравнения линейной регрессии.

2. Оценить тесноту связи с помощью показателей корреляции и детерминации.

3. Найти средний коэффициент эластичности.

Сделать выводы.

Таблица 1–Исходные данные

Номер варианта

Показатель

Регион

1

2

3

4

5

6

7

8

9

10

№1

Х

5,2

5,4

6,1

6,4

7,1

7,6

8,0

8,4

8,9

9,3

У

70,1

68,4

66,2

64,3

62,5

60,2

58,1

56,4

53,5

52,0

№2

Х

5,3

5,5

6,2

6,5

7,2

7,7

8,1

8,5

9,0

9,4

У

70,2

68,5

66,3

64,4

62,6

60,3

58,2

56,5

53,6

52,1

№3

Х

5,4

5,6

6,3

6,6

7,3

7,8

8,2

8,6

9,1

9,5

У

70,2

68,5

66,3

64,4

62,6

60,3

58,2

56,5

53,6

52,1

№4

Х

5,5

5,6

6,3

6,7

7,3

7,8

8,2

8,6

9,1

9,5

У

70,2

68,6

66,3

64,4

62,6

60,4

58,2

56,5

53,6

52,1

№5

Х

5,5

5,6

6,4

6,7

7,3

7,8

8,3

8,6

9,1

9,5

У

70,2

68,6

66,3

64,4

62,6

60,4

58,2

56,8

53,6

52,1

№6

Х

5,5

5,8

6,4

6,7

7,5

7,8

8,3

8,6

9,1

9,5

У

70,2

68,6

66,3

64,4

62,6

60,4

58,2

56,8

53,6

52,1

Продолжение таблицы 1

Номер варианта

Показатель

Регион

1

2

3

4

5

6

7

8

9

10

№7

Х

5,5

5,8

6,4

6,7

7,5

7,8

8,3

8,6

9,1

9,5

У

70,5

68,6

66,3

64,4

62,6

60,5

58,2

56,8

53,6

52,5

№8

Х

5,5

5,8

6,5

6,7

7,5

7,8

8,5

8,6

9,1

9,5

У

70,5

68,6

66,3

64,4

62,6

60,5

58,2

56,8

53,6

52,5

№9

Х

5,4

5,8

6,5

6,7

7,4

7,8

8,4

8,6

9,1

9,5

У

70,5

68,6

66,3

64,4

62,6

60,5

58,2

56,8

53,6

52,5

№10

Х

5,4

5,8

6,5

6,7

7,4

7,8

8,4

8,6

9,1

9,5

У

70,3

68,6

66,3

64,3

62,6

60,5

58,3

56,8

53,6

52,5

№11

Х

5,0

5,8

6,5

6,7

7,5

7,8

8,3

8,6

9,1

9,5

У

70,3

68,6

66,3

64,3

62,6

60,5

58,3

56,8

53,6

52,5

№12

Х

5,0

5,8

6,5

6,7

7,5

7,8

8,3

8,6

9,1

9,5

У

70,2

68,6

66,3

64,2

62,6

60,5

58,2

56,8

53,6

52,5

№13

Х

5,1

5,8

6,5

6,7

7,5

7,8

8,1

8,6

9,1

9,5

У

70,2

68,6

66,3

64,2

62,6

60,5

58,2

56,8

53,6

52,5

№14

Х

5,1

5,7

6,5

6,7

7,5

7,7

8,1

8,7

9,1

9,5

У

70,3

68,6

66,4

64,2

62,6

60,5

58,3

56,8

53,6

52,5

№15

Х

5,3

5,7

6,5

6,7

7,3

7,7

8,1

8,3

9,1

9,5

У

70,3

68,6

66,4

64,2

62,6

60,5

58,3

56,8

53,6

52,5

№16

Х

5,3

5,7

6,5

6,7

7,3

7,7

8,1

8,3

9,1

9,5

У

70,5

68,6

66,4

64,2

62,5

60,5

58,3

56,8

53,8

52,5

№17

Х

5,4

5,7

6,5

6,4

7,3

7,7

8,1

8,4

9,1

9,5

У

70,5

68,6

66,4

64,2

62,5

60,5

58,3

56,8

53,8

52,5

№18

Х

5,4

5,8

6,5

6,4

7,3

7,8

8,1

8,8

9,1

9,5

У

70,5

68,6

66,4

64,2

62,5

60,5

58,3

56,8

53,8

52,5

№19

Х

5,4

5,8

6,5

6,4

7,3

7,8

8,1

8,8

9,1

9,5

У

70,2

68,6

66,4

64,2

62,5

60,2

58,3

56,8

53,2

52,5

Продолжение таблицы 1

Номер варианта

Показатель

Регион

1

2

3

4

5

6

7

8

9

10

№20

Х

5,4

5,8

6,3

6,4

7,3

7,8

8,3

8,8

9,1

9,5

У

70,2

68,6

66,3

64,2

62,5

60,3

58,3

56,8

53,2

52,5

№21

Х

5,3

5,8

6,3

6,8

7,3

7,8

8,3

8,8

9,3

9,5

У

70,2

68,6

66,3

64,2

62,5

60,3

58,3

56,8

53,2

52,5

№22

Х

5,3

5,8

6,3

6,8

7,3

7,8

8,3

8,8

9,3

9,5

У

70,3

68,6

66,3

64,3

62,5

60,3

58,3

56,8

53,3

52,5

№23

Х

5,4

5,8

6,3

6,7

7,4

7,8

8,3

8,8

9,0

9,5

У

70,3

68,6

66,3

64,3

62,5

60,3

58,3

56,8

53,3

52,5

№24

Х

5,4

5,8

6,3

6,8

7,4

7,8

8,3

8,8

9,0

9,5

У

70,4

68,6

66,3

64,4

62,5

60,3

58,4

56,8

53,4

52,5

№25

Х

5,2

5,8

6,3

6,9

7,4

7,8

8,3

8,8

9,0

9,5

У

70,4

68,6

66,3

64,4

62,5

60,3

58,4

56,8

53,4

52,5

№26

Х

5,2

5,8

6,3

7,0

7,4

7,8

8,3

8,7

9,0

9,5

У

70,5

68,6

66,3

64,4

62,5

60,3

58,4

56,8

53,4

52,5

№27

Х

5,2

5,6

6,3

7,0

7,4

7,6

8,3

8,6

9,0

9,5

У

70,5

68,6

66,3

64,4

62,5

60,4

58,4

56,8

53,4

52,5

№28

Х

5,4

5,6

6,3

7,0

7,3

7,6

8,3

8,6

9,0

9,5

У

70,5

68,6

66,3

64,4

62,5

60,4

58,4

56,8

53,4

52,5

№29

Х

5,4

5,6

6,2

7,0

7,2

7,6

8,2

8,6

9,0

9,5

У

70,5

68,6

66,3

64,4

62,6

60,4

58,4

56,6

53,4

52,5

№30

Х

5,4

5,6

6,2

7,0

7,2

7,6

8,2

8,6

9,0

9,5

У

70,5

68,6

66,3

64,4

62,6

60,4

58,4

56,6

53,4

52,5