
- •Что я должен предварительно знать?
- •Какая версия Delphi мне нужна?
- •Что и где я могу найти в книге, или, другими словами, из чего состоит эта книга?
- •Глава 11 сконцентрирована вокруг нескольких технологий сжатия. Подробно рассматриваются такие алгоритмы сжатия, как Шеннона‑Фано, Хаффмана, с применением скошенного дерева и lz77.
- •От изготовителя fb2.
- •Благодарности
- •Глава 1. Что такое алгоритм?
- •Что такое алгоритм?
- •Анализ алгоритмов
- •О‑нотация
- •Лучший, средний и худший случаи
- •Алгоритмы и платформы
- •Виртуальная память и страничная организация памяти
- •Пробуксовка
- •Локальность ссылок
- •Кэш процессора
- •Выравнивание данных
- •Пространство или время
- •Длинные строки
- •Использование ключевого слова const
- •Осторожность в отношении автоматического преобразования типов
- •Тестирование и отладка
- •Утверждения
- •Комментарии
- •Протоколирование
- •Трассировка
- •Анализ покрытия
- •Тестирование модулей
- •Отладка
- •Глава 2. Массивы.
- •Массивы
- •Типы массивов в Delphi
- •Стандартные массивы
- •Динамические массивы
- •Новые динамические массивы
- •Класс tList, массив указателей
- •Краткий обзор класса tList
- •Класс TtdObjectList
- •Массивы на диске
- •Глава 3. Связные списки, стеки и очереди
- •Односвязные списки
- •Узлы связного списка
- •Создание односвязного списка
- •Вставка и удаление элементов в односвязном списке
- •Соображения по поводу эффективности
- •Использование начального узла
- •Использование диспетчера узлов
- •Класс односвязного списка
- •Двухсвязные списки
- •Вставка и удаление элементов в двухсвязном списке
- •Использование начального и конечного узлов
- •Использование диспетчера узлов
- •Класс двухсвязного списка
- •Достоинства и недостатки связных списков
- •Стеки на основе односвязных списков
- •Стеки на основе массивов
- •Пример использования стека
- •Очереди
- •Очереди на основе односвязных списков
- •Очереди на основе массивов
- •Глава 4. Поиск.
- •Процедуры сравнения
- •Последовательный поиск
- •Массивы
- •Связные списки
- •Бинарный поиск
- •Массивы
- •Связные списки
- •Вставка элемента в отсортированный контейнер
- •Глава 5. Сортировка
- •Алгоритмы сортировки
- •Тасование массива tList
- •Основы сортировки
- •Самые медленные алгоритмы сортировки
- •Пузырьковая сортировка
- •Шейкер‑сортировка
- •Сортировка методом выбора
- •Сортировка методом вставок
- •Быстрые алгоритмы сортировки
- •Сортировка методом Шелла
- •Сортировка методом прочесывания
- •Самые быстрые алгоритмы сортировки
- •Сортировка слиянием
- •Быстрая сортировка
- •Сортировка слиянием для связных списков
- •Глава 6. Рандомизированные алгоритмы.
- •Генерация случайных чисел
- •Критерий хи‑квадрат
- •Метод средних квадратов
- •Линейный конгруэнтный метод
- •Тестирование
- •Тест на однородность
- •Тест на пропуски
- •Тест "покер"
- •Тест "сбор купонов"
- •Результаты выполнения тестов
- •Комбинирование генераторов
- •Аддитивные генераторы
- •Тасующие генераторы
- •Выводы по алгоритмам генерации случайных чисел
- •Другие распределения случайных чисел
- •Списки с пропусками
- •Поиск в списке с пропусками
- •Вставка в список с пропусками
- •Удаление из списка с пропусками
- •Полная реализация класса связного списка
- •Глава 7. Хеширование и хеш‑таблицы
- •Функции хеширования
- •Простая функция хеширования для строк
- •Функции хеширования pjw
- •Разрешение конфликтов посредством линейного зондирования
- •Преимущества и недостатки линейного зондирования
- •Удаление элементов из хеш‑таблицы с линейным зондированием
- •Класс хеш‑таблиц с линейным зондированием
- •Другие схемы открытой адресации
- •Квадратичное зондирование
- •Псевдослучайное зондирование
- •Двойное хеширование
- •Разрешение конфликтов посредством связывания
- •Преимущества и недостатки связывания
- •Класс связных хеш‑таблиц
- •Разрешение конфликтов посредством группирования
- •Хеш‑таблицы на диске
- •Расширяемое хеширование
- •Глава 8. Бинарные деревья.
- •Создание бинарного дерева
- •Вставка и удаление с использованием бинарного дерева
- •Перемещение по бинарному дереву
- •Обход в ширину, симметричный обход и обход в глубину
- •Обход по уровням
- •Реализация класса бинарных деревьев
- •Деревья бинарного поиска
- •Вставка в дереве бинарного поиска
- •Удаление из дерева бинарного поиска
- •Реализация класса дерева бинарного поиска
- •Перекомпоновка дерева бинарного поиска
- •Скошенные деревья
- •Реализация класса скошенного дерева
- •Красно‑черные деревья
- •Вставка в красно‑черное дерево
- •Удаление из красно‑черного дерева
- •Глава 9. Очереди по приоритету и пирамидальная сортировка.
- •Очередь по приоритету
- •Первая простая реализация
- •Вторая простая реализация
- •Сортирующее дерево
- •Вставка в сортирующее дерево
- •Удаление из сортирующего дерева
- •Реализация очереди по приоритету при помощи сортирующего дерева
- •Пирамидальная сортировка
- •Алгоритм Флойда
- •Завершение пирамидальной сортировки
- •Расширение очереди по приоритету
- •Восстановление свойства пирамидальное
- •Отыскание произвольного элемента в сортирующем дереве
- •Реализация расширенной очереди по приоритету
- •Глава 10. Конечные автоматы и регулярные выражения.
- •Конечные автоматы
- •Использование конечного автомата: синтаксический анализ
- •Синтаксический анализ файлов с разделяющими запятыми
- •Детерминированные и недетерминированные конечные автоматы
- •Регулярные выражения
- •Использование регулярных выражений
- •Синтаксический анализ регулярных выражений
- •Компиляция регулярных выражений
- •Сопоставление строк с регулярными выражениями
- •Глава 11. Сжатие данных.
- •Представление данных
- •Сжатие данных
- •Типы сжатия
- •Потоки битов
- •Сжатие с минимальной избыточностью
- •Кодирование Шеннона‑Фано
- •Кодирование Хаффмана
- •Кодирование с использованием скошенного дерева
- •Сжатие с использованием словаря
- •Описание сжатия lz77
- •Особенности кодирования литеральных символов и пар расстояние/длина
- •Восстановление с применением алгоритма lz77
- •Сжатие lz77
- •Глава 12. Дополнительные темы.
- •Алгоритм считывания‑записи
- •Алгоритм производителей‑потребителей
- •Модель с одним производителем и одним потребителем
- •Модель с одним производителем и несколькими потребителями
- •Поиск различий между двумя файлами
- •Вычисление lcs двух строк
- •Вычисление lcs двух файлов
- •Список литературы
Пробуксовка
Пробуксовка может негативно сказаться на вашем приложении, превращая его из высокоэффективной оптимизированной программы в медленную и ленивую. Предположим, что существует приложение, которое требует большого объема памяти, скажем, например, половину всей имеющейся в компьютере физической памяти. Оно создает большие массивы крупных блоков, выделяя память из кучи. Такое выделение приведет к тому, что будут заниматься новые страницы, а старые, скорее всего, будут записываться на диск. Затем приложение считывает эти большие блоки, начиная с начала массива и в направлении его конца. Операционная система при необходимости будет считывать запрашиваемые страницы из ОЗУ. При этом никаких проблем возникать не будет.
А теперь представим себе, что приложение считывает блоки в произвольном порядке. Скажем, сначала оно считывает данные из блока 56, затем из блоков 123, 12, 234 и т.д. В таком случае вероятность возникновения ошибки отсутствия страницы увеличивается. При этом все большее и большее количество страниц будет записываться на диск и считываться с диска. Индикатор работы диска будет гореть почти постоянно, а скорость работы приложения упадет. Это и есть пробуксовка ‑ непрерывный обмен страницами между диском и памятью, вызванный запросами приложения страниц в произвольном порядке.
В общем случае лекарства от пробуксовки нет. Большую часть времени блоки памяти выделяются из программы динамического распределения памяти Delphi. Кроме того, программист не может управлять конкретным расположением блоков памяти. Может случиться, например, что связанные блоки данных хранятся в разных страницах. (Здесь под словом "связанные" понимается блоки памяти, данные из которых, вероятно, будут считываться одновременно, поскольку сами данные связаны.) Одним из методов снижения риска возникновения пробуксовки является использование отдельных куч для выделения памяти для структур и данных разных приложений. Но алгоритм такого выделения в настоящей книге не приводится.
Рассмотрим пример. Предположим, что мы выделили память под элементы объекта TList. Каждый из элементов содержит, по крайней мере, одну строку, память для которой выделяется из кучи (например, мы пользуемся 32‑разрядным Delphi и элемент использует длинные строки). А теперь представим себе, что приложение уже проработало некоторое время, и элементы в объекте TList неоднократно добавлялись и удалялись. Вполне возможно, что экземпляр TList, его элементы и строки элементов распределены по разным страницам памяти. Теперь при последовательном считывании элементов объекта TList от начала до конца приложение будет обращаться ко многим страницам, что приведет к активному обмену страницами между диском и памятью. Если количество элементов достаточно мало, все страницы, относящиеся к данному приложению, могут находиться в памяти. Но если в объекте TList элементов насчитывается несколько миллионов, при их считывании приложение может породить состояние пробуксовки.
Локальность ссылок
Самое время обсудить еще одну концепцию ‑ локальность ссылок. Этот принцип представляет собой метод представления приложений, который помогает свести вероятность возникновения пробуксовки к минимуму. Это понятие предполагает, что связанные данные должны находиться в виртуальной памяти как можно ближе друг к другу. Если принцип локальности ссылок соблюдается, при считывании части данных другую их часть можно будет найти на соседних страницах памяти.
Например, массив записей имеет высокий уровень локальности ссылок. Так, элемент с индексом 1 в памяти находится рядом с элементом с индексом 2 и т.д. Если приложение последовательно считывает все записи массива, локальность ссылок будет очень высокой. Обмен страницами между диском и памятью будет минимальным. Экземпляр объекта TList, содержащий указатели на тот же тип записей, несмотря на то, что это тоже массив, фактически содержащий те же данные, будет иметь низкий уровень локальности ссылок. Как было показано ранее, каждый элемент такого массива может находиться на отдельной странице. Таким образом, последовательное считывание элементов вызовет обмен данными между диском и памятью. Связанные списки (см. главу 3) также обладают низким уровнем локальности ссылок.
Существуют специальные методы повышения уровня локальности ссылок для различных структур данных и алгоритмов, и некоторые из них будут рассмотрены в настоящей книге. К нашему сожалению, диспетчер динамического распределения памяти Delphi является слишком общим. Программист не может вынудить Delphi выделить память под серию элементов из одной страницы. Еще хуже тот факт, что все объекты представляют собой экземпляры, память для которых выделяется из кучи. Возможность выделения памяти для отдельных объектов из определенных страниц позволила бы избежать многих неприятностей. (В действительности это возможно за счет подмены метода класса Newlnstance, но подмену приходится делать для всех классов, для которых нужна такая возможность.)
До сих пор мы говорили о локальности ссылок в смысле расстояния ("один объект находится в памяти рядом с другим объектом"), но локальность ссылок можно трактовать и по отношению ко времени. Это означает, что если элемент недавно использовался, он скоро будет использоваться снова, или, скажем, элемент X всегда используется вместе с элементом Y. Воплощением локальности ссылок во времени является кэш‑память. Кэш‑память (cache) представляет собой небольшой блок памяти для некоторого процесса, содержащий элементы, которые использовались недавно. При каждом использовании элемента он копируется в кэш‑память. Если кэш заполнен, при удалении элементов применяется алгоритм с удалением наиболее давно использованных элементов (least recently used, LRU), по которому элемент, который давно не использовался, замещается недавно использованным элементом. Таким образом, кэш‑память содержит несколько близких в пространственном смысле элементов, которые, помимо всего прочего, близки и в смысле времени их использования.
Обычно кэш‑память применяется для элементов, которые хранятся на медленных устройствах. В качестве классического примера можно привести дисковый кэш. Тем не менее, теоретически кэш виртуальной памяти мог бы работать точно таким же образом, особенно с приложениями, которые требуют большого объема памяти и используются на вычислительных машинах с небольшими объемами ОЗУ.