
- •Что я должен предварительно знать?
- •Какая версия Delphi мне нужна?
- •Что и где я могу найти в книге, или, другими словами, из чего состоит эта книга?
- •Глава 11 сконцентрирована вокруг нескольких технологий сжатия. Подробно рассматриваются такие алгоритмы сжатия, как Шеннона‑Фано, Хаффмана, с применением скошенного дерева и lz77.
- •От изготовителя fb2.
- •Благодарности
- •Глава 1. Что такое алгоритм?
- •Что такое алгоритм?
- •Анализ алгоритмов
- •О‑нотация
- •Лучший, средний и худший случаи
- •Алгоритмы и платформы
- •Виртуальная память и страничная организация памяти
- •Пробуксовка
- •Локальность ссылок
- •Кэш процессора
- •Выравнивание данных
- •Пространство или время
- •Длинные строки
- •Использование ключевого слова const
- •Осторожность в отношении автоматического преобразования типов
- •Тестирование и отладка
- •Утверждения
- •Комментарии
- •Протоколирование
- •Трассировка
- •Анализ покрытия
- •Тестирование модулей
- •Отладка
- •Глава 2. Массивы.
- •Массивы
- •Типы массивов в Delphi
- •Стандартные массивы
- •Динамические массивы
- •Новые динамические массивы
- •Класс tList, массив указателей
- •Краткий обзор класса tList
- •Класс TtdObjectList
- •Массивы на диске
- •Глава 3. Связные списки, стеки и очереди
- •Односвязные списки
- •Узлы связного списка
- •Создание односвязного списка
- •Вставка и удаление элементов в односвязном списке
- •Соображения по поводу эффективности
- •Использование начального узла
- •Использование диспетчера узлов
- •Класс односвязного списка
- •Двухсвязные списки
- •Вставка и удаление элементов в двухсвязном списке
- •Использование начального и конечного узлов
- •Использование диспетчера узлов
- •Класс двухсвязного списка
- •Достоинства и недостатки связных списков
- •Стеки на основе односвязных списков
- •Стеки на основе массивов
- •Пример использования стека
- •Очереди
- •Очереди на основе односвязных списков
- •Очереди на основе массивов
- •Глава 4. Поиск.
- •Процедуры сравнения
- •Последовательный поиск
- •Массивы
- •Связные списки
- •Бинарный поиск
- •Массивы
- •Связные списки
- •Вставка элемента в отсортированный контейнер
- •Глава 5. Сортировка
- •Алгоритмы сортировки
- •Тасование массива tList
- •Основы сортировки
- •Самые медленные алгоритмы сортировки
- •Пузырьковая сортировка
- •Шейкер‑сортировка
- •Сортировка методом выбора
- •Сортировка методом вставок
- •Быстрые алгоритмы сортировки
- •Сортировка методом Шелла
- •Сортировка методом прочесывания
- •Самые быстрые алгоритмы сортировки
- •Сортировка слиянием
- •Быстрая сортировка
- •Сортировка слиянием для связных списков
- •Глава 6. Рандомизированные алгоритмы.
- •Генерация случайных чисел
- •Критерий хи‑квадрат
- •Метод средних квадратов
- •Линейный конгруэнтный метод
- •Тестирование
- •Тест на однородность
- •Тест на пропуски
- •Тест "покер"
- •Тест "сбор купонов"
- •Результаты выполнения тестов
- •Комбинирование генераторов
- •Аддитивные генераторы
- •Тасующие генераторы
- •Выводы по алгоритмам генерации случайных чисел
- •Другие распределения случайных чисел
- •Списки с пропусками
- •Поиск в списке с пропусками
- •Вставка в список с пропусками
- •Удаление из списка с пропусками
- •Полная реализация класса связного списка
- •Глава 7. Хеширование и хеш‑таблицы
- •Функции хеширования
- •Простая функция хеширования для строк
- •Функции хеширования pjw
- •Разрешение конфликтов посредством линейного зондирования
- •Преимущества и недостатки линейного зондирования
- •Удаление элементов из хеш‑таблицы с линейным зондированием
- •Класс хеш‑таблиц с линейным зондированием
- •Другие схемы открытой адресации
- •Квадратичное зондирование
- •Псевдослучайное зондирование
- •Двойное хеширование
- •Разрешение конфликтов посредством связывания
- •Преимущества и недостатки связывания
- •Класс связных хеш‑таблиц
- •Разрешение конфликтов посредством группирования
- •Хеш‑таблицы на диске
- •Расширяемое хеширование
- •Глава 8. Бинарные деревья.
- •Создание бинарного дерева
- •Вставка и удаление с использованием бинарного дерева
- •Перемещение по бинарному дереву
- •Обход в ширину, симметричный обход и обход в глубину
- •Обход по уровням
- •Реализация класса бинарных деревьев
- •Деревья бинарного поиска
- •Вставка в дереве бинарного поиска
- •Удаление из дерева бинарного поиска
- •Реализация класса дерева бинарного поиска
- •Перекомпоновка дерева бинарного поиска
- •Скошенные деревья
- •Реализация класса скошенного дерева
- •Красно‑черные деревья
- •Вставка в красно‑черное дерево
- •Удаление из красно‑черного дерева
- •Глава 9. Очереди по приоритету и пирамидальная сортировка.
- •Очередь по приоритету
- •Первая простая реализация
- •Вторая простая реализация
- •Сортирующее дерево
- •Вставка в сортирующее дерево
- •Удаление из сортирующего дерева
- •Реализация очереди по приоритету при помощи сортирующего дерева
- •Пирамидальная сортировка
- •Алгоритм Флойда
- •Завершение пирамидальной сортировки
- •Расширение очереди по приоритету
- •Восстановление свойства пирамидальное
- •Отыскание произвольного элемента в сортирующем дереве
- •Реализация расширенной очереди по приоритету
- •Глава 10. Конечные автоматы и регулярные выражения.
- •Конечные автоматы
- •Использование конечного автомата: синтаксический анализ
- •Синтаксический анализ файлов с разделяющими запятыми
- •Детерминированные и недетерминированные конечные автоматы
- •Регулярные выражения
- •Использование регулярных выражений
- •Синтаксический анализ регулярных выражений
- •Компиляция регулярных выражений
- •Сопоставление строк с регулярными выражениями
- •Глава 11. Сжатие данных.
- •Представление данных
- •Сжатие данных
- •Типы сжатия
- •Потоки битов
- •Сжатие с минимальной избыточностью
- •Кодирование Шеннона‑Фано
- •Кодирование Хаффмана
- •Кодирование с использованием скошенного дерева
- •Сжатие с использованием словаря
- •Описание сжатия lz77
- •Особенности кодирования литеральных символов и пар расстояние/длина
- •Восстановление с применением алгоритма lz77
- •Сжатие lz77
- •Глава 12. Дополнительные темы.
- •Алгоритм считывания‑записи
- •Алгоритм производителей‑потребителей
- •Модель с одним производителем и одним потребителем
- •Модель с одним производителем и несколькими потребителями
- •Поиск различий между двумя файлами
- •Вычисление lcs двух строк
- •Вычисление lcs двух файлов
- •Список литературы
Создание бинарного дерева
Само по себе создание бинарного дерева тривиально. В простейшем случае корневой узел бинарного дерева определяет все бинарное дерево.
var
MyBinaryTree : PtBinTreeNode;
Если MyBinaryTree равен nil, никакого бинарного дерева не существует, поэтому это значение служит начальным значением бинарного дерева.
{инициализировать бинарное дерево}
MyBinaryTree :=nil;
На практике принято использовать фиктивный узел, аналогичный фиктивному заглавному узлу односвязного списка, чтобы каждый реальный узел дерева, включая корневой, имел родительский узел. Корневой узел может быть как левым, так и правым дочерним узлом фиктивного узла, но для определенности примем, что он является левым.
Вставка и удаление с использованием бинарного дерева
Если мы всерьез намереваемся использовать бинарное дерево, необходимо рассмотреть, как выполняется добавление в дерево элементов (т.е. узлов), удаление элементов из дерева и посещение всех элементов дерева. Последняя операция позволит выполнять поиск конкретного элемента. Поскольку выполнение последних двух операций невозможно без рассмотрения первой, начнем с рассмотрения вставки узла в бинарное дерево.
Чтобы иметь возможность вставить узел в бинарное дерево, необходимо выбрать родительский узел, к которому можно присоединить новый узел в качестве дочернего, и более того, этот узел не может уже иметь два дочерних узла. Мы должны также знать, каким дочерним узлом ‑ левым или правым ‑ должен стать новый узел.
При заданном родительском узле и указании дочерних узлов слева направо код для вставки узла очень прост. Мы создаем узел, устанавливаем в качестве значения его поля данных элемент, который добавляем в дерево, и определяем обе его дочерние связи как nil. Затем, во многом подобно вставке узла в двусвязный список, мы устанавливаем соответствующий дочерний указатель родительского узла так, чтобы он указывал на новый дочерний узел, а )родительский указатель дочернего узла ‑ на родительский узел.
Листинг 8.2. Вставка в бинарное дерево
function TtdBinaryTree.InsertAt(aParentNode : PtdBinTreeNode;
aChildType : TtdChildType; aItem : pointer): PtdBinTreeNode;
begin
{если родительский узел является нулевым, считаем, что выполняется вставка корневого узла}
if (aParentNode = nil) then begin
aParentNode := FHead;
aChildType :=ctLeft;
end;
{выполнить проверку mos о, установлена ли уже дочерняя связь}
if (aParentNode^.btChild[aChildType]<> nil) then
btError(tdeBinTreeHasChild, 'InsertAt');
{распределить новый узел и вставить в качестве требуемого дочернего узла родительского узла}
Result := BTNodeManager.AllocNode;
Result^.btParent := aParentNode;
Result^.btChild[ctLeft] :=nil;
Result^.btChild[ctRight] := nil;
Result^.btData := aItem;
Result^.btExtra := 0;
aParentNode^.btChild[aChildType] := Result;
inc(FCount);
end;
Обратите внимание, что приведенный в листинге 8.2 код вначале проверяет, является ли добавляемый узел корневым. Если да, то переданный родительский узел равен nil. В этом случае метод инициализирует родительский узел значением внутреннего заглавного узла.
Кроме этой проверки метод InsertAt убеждается, что дочерняя связь, которую предполагается использовать для нового узла, действительно не используется. В противном случае это будет грубой ошибкой.
Обратите внимание, что класс бинарного дерева (составной частью которого является этот метод) использует диспетчер узлов для распределения и освобождения узлов. Поскольку все узлы имеют одинаковый размер, в этом, как было сказано в главе 3, заложен глубокий смысл.
А как выполняется удаление узлов? Эта задача несколько сложнее, поскольку узел может иметь один или два дочерних узла. Первое правило удаления может быть сформулировано следующим образом: листовой узел (т.е. не имеющий дочерних узлов) может быть удален без каких‑либо нежелательных последствий. При этом мы выясняем, каким дочерним узлом родительского узла является лист, и устанавливаем соответствующую дочернюю связь равной nil. После этого узел может быть освобожден.
Второе правило удаления из бинарного дерева применяется в отношении случая, когда удаляемый узел имеет один дочерний узел. Эта задача также достаточно проста: мы просто перемещаем дочерний узел вверх по дереву, чтобы он стал тем же дочерним узлом родительского узла, каким является удаляемый узел.
Третье правило применяется к случаю, когда удаляемый узел имеет два дочерних узла. Как и можно было предположить, это правило звучит просто: узел не может быть удален. Попытка сделать это является ошибкой. Позже мы рассмотрим вариант бинарного дерева ‑ дерево бинарного поиска, ‑ который содержит достаточный объем дополнительной внедренной в дерево информации, чтобы можно было обойти это ограничение.
Листинг 8.3. Удаление из бинарного дерева
procedure TtdBinaryTree.Delete(aNode : PtdBinTreeNode);
var
OurChildsType : TtdChildType;
OurType : TtdChildType;
begin
if (aNode = nil) then
Exit;
{выяснить, имеется ли единственный дочерний узел, и то, каким узлом он является; при наличии двух дочерних узлов сгенерировать ошибку}
if (aNode^.btChild[ctLeft] <> nil) then begin
if (aNode^.btChild[ctRight] <> nil) then
btError(tdeBinTree2Children, 'Delete');
OurChildsType :=ctLeft;
end
else
OurChildsType :=ctRight;
{выяснить, является ли дочерний узел левым или правым дочерним узлом данного родительского узла}
OurType := GetChildType(aNode);
{установить дочернюю связь данного родительского узла равной данной дочерней связи}
aNode^.btParent^.btChild[OurType] := aNode^.btChild[OurChildsType];
if (aNode^.btChild[OurChildsType] <> nil) then
aNode^.btChild[OurChildsType]^.btParent := aNode^.btParent;
{освободить узел}
if Assigned(FDispose) then
FDispose(aNode^.btData);
BTNodeManager.FreeNode(aNode);
dec(FCount);
end;
В листинге 8.3 не учтен случай, когда удаляемый узел является нулевым. В любом случае в этой ситуации мало что можно сделать, а генерация исключения была бы излишней. Поэтому метод проверяет, чтобы удаляемый узел не имел двух дочерних узлов. Однако он не разделяет два других случая удаления (т.е. случаи отсутствия дочерних узлов и наличия только одного дочернего узла), а объединяет их в один случай, когда один дочерний узел замещает узел, даже если дочерний узел является нулевым. GetChildType ‑ это небольшая функция, которая возвращает информацию о том, является ли ее параметр узла левым или правым дочерним узлом родительского узла.