Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baknell_Fundamentalnyie_algoritmyi_i_strukturyi...rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.86 Mб
Скачать

Шейкер‑сортировка

Пузырьковая сортировка имеет одну малоизвестную вариацию, которая на практике дает незначительное увеличение скорости, ‑ это так называемая шейкер‑сортировка (shaker sort).

Рисунок 5.2. Два прохода с помощью шейкер‑сортировки

Вернемся к картам. Выполните первый проход согласно алгоритму сортировки. Туз попадет на первую позицию. Теперь, вместо прохода колоды карт справа налево, пройдите слева направо: сравните вторую и третью карты и старшую карту поместите на третью позицию. Сравните третью и четвертую карты, и при необходимости поменяйте их местами. Продолжайте сравнения вплоть до достижения пары (12, 13). По пути к правому краю колоды вы "захватили" короля и переместили его на последнюю позицию.

А теперь снова пройдите колоду справа налево до второй карты. Во вторую позицию попадет двойка. Продолжайте чередовать направления проходов до тех пор, пока не будет отсортирована вся колода.

Листинг 5.5. Шейкер‑сортировка

procedure TDShakerSort(aList :TList;

aFirst : integer; aLast : integer;

aCompare : TtdCompareFunc);

var

i : integer;

Temp : pointer;

begin

TDValidateListRange(aList, aFirst, aLast, 'TDShakerSort');

while (aFirst < aLast) do

begin

for i := aLast downto succ(aFirst) do

if (aCompare(aList.List^[i], aList.List^[i‑1]) < 0) then begin

Temp := aList.List^[i];

aList.List^[i] := aList.List^[i‑1];

aList.List^[i‑1] := Temp;

end;

inc(aFirst);

for i := succ(aFirst) to aLast do

if (aCompare(aList.List^[i], aList.List^[i‑1]) < 0) then begin

Temp := aList.List^[i];

aList.List^[i] := aList.List^[i‑1];

aList.List^[i‑1] := Teilend;

dec(aLast);

end;

end;

Несмотря на то что шейкер‑сортировка принадлежит к алгоритмам класса O(n(^2^)), время ее выполнения немного меньше, чем для пузырьковой сортировки. Причина, по которой алгоритм назван именно шейкер‑сортировкой, состоит в том, что элементы в списке колеблются относительно своих позиций до тех пор, пока список не будет отсортирован.

Как и пузырьковая сортировка, шейкер‑сортировка относится к неустойчивым алгоритмам.

Сортировка методом выбора

Следующим алгоритмом, который мы рассмотрим, будет сортировка методом выбора (selection sort). Это пока что первый метод, который действительно можно использовать в повседневной практике (о пузырьковой сортировке и шейкер‑сортировке можно уже забыть).

Начиная с правого края колоды, просмотрите все карты и найдите самую младшую (конечно, это будет туз). Поменяйте местами туз с первой картой. Теперь, игнорируя первую карту, снова просмотрите всю колоду справа налево в поисках самой младшей карты. Поменяйте местами младшую карту со второй картой. Далее, игнорируя первые две карты, просмотрите всю колоду справа налево в поисках самой младшей карты и поменяйте найденную карту с третьей картой. Продолжайте процесс до тех пор, пока вся колода не будет отсортирована. Очевидно, что тринадцатый цикл не понадобится, поскольку он будет манипулировать только с одной картой, которая к тому времени уже будет находиться в требуемой позиции.

Листинг 5.6. Сортировка методом выбора

procedure TDSelectionSort(aList : TList;

aFirst : integer; aLast : integer;

aCompare : TtdCompareFunc);

var

i, j : integer;

IndexOfMin : integer;

Temp : pointer;

begin

TDValidateListRange(aList, aFirst, aLast, 'TDSelectionSort');

for i := aFirst to pred(aLast) do

begin

IndexOfMin := i;

for j := succ(i) to aLast do

if (aCompare(aList.List^[j], aList.List^[IndexOfMin]) < 0) then

IndexOfMin := j;

if (aIndexOfMin <> i) then begin

Temp := aList.List^[i];

aList.List^[i] := aList.List^[IndexOfMin];

aList.List^[IndexOfMin] := Teilend;

end;

end;

Рисунок 5.3 Сортировка методом выбора

Как видите, в приведенном коде снова присутствуют два вложенных цикла, следовательно, сортировка методом выбора относится к алгоритмам класса O(n(^2^)). В первом цикле индекс проходит значения от aFast до aLast‑1 и при каждом его выполнении во внутреннем цикле определяется элемент с минимальным значением в оставшейся части списка. В отличие от нашего примера с картами, внутренний цикл заранее не знает, каковым будет минимальный элемент в списке, поэтому ему нужно просмотреть все элементы. После обнаружения минимального элемента он переставляется в требуемую позицию.

Сортировка методом выбора интересна одной своей особенностью. Количество выполняемых сравнений для первого прохода равно n, для второго ‑ n‑1 и т.д. Общее количество сравнений будет равно n (n + 1)/2 = 1, т.е. сортировка принадлежит к классу алгоритмов O(n(^2^)). Тем не менее, количество перестановок намного меньше: при каждом выполнении внешнего цикла производится всего одна перестановка. Таким образом, общее количество перестановок (n ‑ 1), т.е. O(n). Что это означает на практике? Если стоимость перестановки элементов намного больше, чем время сравнения (под стоимостью в данном случае понимается время или требуемые ресурсы), сортировка методом выбора оказывается достаточно эффективной.

Сортировка методом выбора относится к группе устойчивых алгоритмов. Поиск наименьшего значения будет возвращать первое в списке наименьшее значение из нескольких имеющихся. Таким образом, равные значения будут находиться в отсортированном списке в том же порядке, в котором они были в исходном списке.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]