
- •Что я должен предварительно знать?
- •Какая версия Delphi мне нужна?
- •Что и где я могу найти в книге, или, другими словами, из чего состоит эта книга?
- •Глава 11 сконцентрирована вокруг нескольких технологий сжатия. Подробно рассматриваются такие алгоритмы сжатия, как Шеннона‑Фано, Хаффмана, с применением скошенного дерева и lz77.
- •От изготовителя fb2.
- •Благодарности
- •Глава 1. Что такое алгоритм?
- •Что такое алгоритм?
- •Анализ алгоритмов
- •О‑нотация
- •Лучший, средний и худший случаи
- •Алгоритмы и платформы
- •Виртуальная память и страничная организация памяти
- •Пробуксовка
- •Локальность ссылок
- •Кэш процессора
- •Выравнивание данных
- •Пространство или время
- •Длинные строки
- •Использование ключевого слова const
- •Осторожность в отношении автоматического преобразования типов
- •Тестирование и отладка
- •Утверждения
- •Комментарии
- •Протоколирование
- •Трассировка
- •Анализ покрытия
- •Тестирование модулей
- •Отладка
- •Глава 2. Массивы.
- •Массивы
- •Типы массивов в Delphi
- •Стандартные массивы
- •Динамические массивы
- •Новые динамические массивы
- •Класс tList, массив указателей
- •Краткий обзор класса tList
- •Класс TtdObjectList
- •Массивы на диске
- •Глава 3. Связные списки, стеки и очереди
- •Односвязные списки
- •Узлы связного списка
- •Создание односвязного списка
- •Вставка и удаление элементов в односвязном списке
- •Соображения по поводу эффективности
- •Использование начального узла
- •Использование диспетчера узлов
- •Класс односвязного списка
- •Двухсвязные списки
- •Вставка и удаление элементов в двухсвязном списке
- •Использование начального и конечного узлов
- •Использование диспетчера узлов
- •Класс двухсвязного списка
- •Достоинства и недостатки связных списков
- •Стеки на основе односвязных списков
- •Стеки на основе массивов
- •Пример использования стека
- •Очереди
- •Очереди на основе односвязных списков
- •Очереди на основе массивов
- •Глава 4. Поиск.
- •Процедуры сравнения
- •Последовательный поиск
- •Массивы
- •Связные списки
- •Бинарный поиск
- •Массивы
- •Связные списки
- •Вставка элемента в отсортированный контейнер
- •Глава 5. Сортировка
- •Алгоритмы сортировки
- •Тасование массива tList
- •Основы сортировки
- •Самые медленные алгоритмы сортировки
- •Пузырьковая сортировка
- •Шейкер‑сортировка
- •Сортировка методом выбора
- •Сортировка методом вставок
- •Быстрые алгоритмы сортировки
- •Сортировка методом Шелла
- •Сортировка методом прочесывания
- •Самые быстрые алгоритмы сортировки
- •Сортировка слиянием
- •Быстрая сортировка
- •Сортировка слиянием для связных списков
- •Глава 6. Рандомизированные алгоритмы.
- •Генерация случайных чисел
- •Критерий хи‑квадрат
- •Метод средних квадратов
- •Линейный конгруэнтный метод
- •Тестирование
- •Тест на однородность
- •Тест на пропуски
- •Тест "покер"
- •Тест "сбор купонов"
- •Результаты выполнения тестов
- •Комбинирование генераторов
- •Аддитивные генераторы
- •Тасующие генераторы
- •Выводы по алгоритмам генерации случайных чисел
- •Другие распределения случайных чисел
- •Списки с пропусками
- •Поиск в списке с пропусками
- •Вставка в список с пропусками
- •Удаление из списка с пропусками
- •Полная реализация класса связного списка
- •Глава 7. Хеширование и хеш‑таблицы
- •Функции хеширования
- •Простая функция хеширования для строк
- •Функции хеширования pjw
- •Разрешение конфликтов посредством линейного зондирования
- •Преимущества и недостатки линейного зондирования
- •Удаление элементов из хеш‑таблицы с линейным зондированием
- •Класс хеш‑таблиц с линейным зондированием
- •Другие схемы открытой адресации
- •Квадратичное зондирование
- •Псевдослучайное зондирование
- •Двойное хеширование
- •Разрешение конфликтов посредством связывания
- •Преимущества и недостатки связывания
- •Класс связных хеш‑таблиц
- •Разрешение конфликтов посредством группирования
- •Хеш‑таблицы на диске
- •Расширяемое хеширование
- •Глава 8. Бинарные деревья.
- •Создание бинарного дерева
- •Вставка и удаление с использованием бинарного дерева
- •Перемещение по бинарному дереву
- •Обход в ширину, симметричный обход и обход в глубину
- •Обход по уровням
- •Реализация класса бинарных деревьев
- •Деревья бинарного поиска
- •Вставка в дереве бинарного поиска
- •Удаление из дерева бинарного поиска
- •Реализация класса дерева бинарного поиска
- •Перекомпоновка дерева бинарного поиска
- •Скошенные деревья
- •Реализация класса скошенного дерева
- •Красно‑черные деревья
- •Вставка в красно‑черное дерево
- •Удаление из красно‑черного дерева
- •Глава 9. Очереди по приоритету и пирамидальная сортировка.
- •Очередь по приоритету
- •Первая простая реализация
- •Вторая простая реализация
- •Сортирующее дерево
- •Вставка в сортирующее дерево
- •Удаление из сортирующего дерева
- •Реализация очереди по приоритету при помощи сортирующего дерева
- •Пирамидальная сортировка
- •Алгоритм Флойда
- •Завершение пирамидальной сортировки
- •Расширение очереди по приоритету
- •Восстановление свойства пирамидальное
- •Отыскание произвольного элемента в сортирующем дереве
- •Реализация расширенной очереди по приоритету
- •Глава 10. Конечные автоматы и регулярные выражения.
- •Конечные автоматы
- •Использование конечного автомата: синтаксический анализ
- •Синтаксический анализ файлов с разделяющими запятыми
- •Детерминированные и недетерминированные конечные автоматы
- •Регулярные выражения
- •Использование регулярных выражений
- •Синтаксический анализ регулярных выражений
- •Компиляция регулярных выражений
- •Сопоставление строк с регулярными выражениями
- •Глава 11. Сжатие данных.
- •Представление данных
- •Сжатие данных
- •Типы сжатия
- •Потоки битов
- •Сжатие с минимальной избыточностью
- •Кодирование Шеннона‑Фано
- •Кодирование Хаффмана
- •Кодирование с использованием скошенного дерева
- •Сжатие с использованием словаря
- •Описание сжатия lz77
- •Особенности кодирования литеральных символов и пар расстояние/длина
- •Восстановление с применением алгоритма lz77
- •Сжатие lz77
- •Глава 12. Дополнительные темы.
- •Алгоритм считывания‑записи
- •Алгоритм производителей‑потребителей
- •Модель с одним производителем и одним потребителем
- •Модель с одним производителем и несколькими потребителями
- •Поиск различий между двумя файлами
- •Вычисление lcs двух строк
- •Вычисление lcs двух файлов
- •Список литературы
Узлы связного списка
Перед началом описания операций со связным списком давайте рассмотрим, как каждый узел списка будет представляться в памяти. Знание структуры узла позволит нам более детально рассматривать основные операции со связными списком. Структура узла списка, не использующего классы и объекты, выглядит следующим образом:
type
PSimpleNode = ^TSimpleNode;
TSimpleNode = record
Next : PSimpleNode;
Data : SomeDataType;
end;
Тип PSimpleNode представляет собой указатель на запись TSimpleNode, поле Next которой содержит ссылку на точно такой же узел, а поле Data ‑ сами данные. В приведенном примере тип данных узла задан как SomeDataType. Для перехода по ссылке нужно написать примерно следующий код:
var
NextNode, CurrentNode : PSimpleNode;
begin
• • •
NextNode := CurrentNode^.Next;
Создание односвязного списка
Это тривиальная задача. В самом простом случае первый узел в связном списке описывает весь список. Первый узел иногда называют головой списка.
var
MyLinkedList : PSimpleNode;
Если MyLinkedList содержит nil, списка еще нет. Таким образом, это начальное значение связного списка.
{инициализация связного списка}
MyLinkedList := nil;
Вставка и удаление элементов в односвязном списке
А каким образом можно вставить новый элемент в связный список? Или удалить? Оказывается, что для выполнения этих операций требуется выполнить небольшую работу с указателями.
Для односвязного списка существует только один вариант вставки ‑ после заданного элемента списка. Нужно установить так, чтобы указатель Next нашего нового узла указывал на узел после заданного, а указатель Next заданного узла ‑ на наш новый узел. В коде это выглядит следующим образом:
var
GivenNode, NewNode : PSimpleNode;
begin
• • •
New(NewNode);
.. задать значение поля Data..
NewNode^.Next := GivenNode^.Next;
GivenNode^.Next := NewNode;
Рисунок 3.2. Вставка нового узла в односвязный список
Аналогично, для удаления простейшим вариантом является удаление элемента, находящегося после заданного узла. В этом случае мы устанавливаем, чтобы указатель Next заданного узла указывал на узел, расположенный после удаляемого. После этого удаляемый узел уже выделен из списка и может быть освобожден. В коде это выглядит следующим образом:
var
GivenNode, NodeToGo : PSimpleNode;
begin
• • •
NodeToGo := GivenNode^.Next;
GivenNode^.Next := NodeToGo^.Next;
Dispose(NodeToGo);
Рисунок 3.3. Удаление узла из односвязного списка
Тем не менее, для обеих операций существует специальный случай: вставка перед первым элементом списка (т.е. новый элемент становиться первым) и удаление первого элемента списка (т.е. первым становится другой элемент). Поскольку в наших рассуждениях первый элемент считается определяющим узлом всего списка, код для этих случаев нужно написать отдельно. Вставка перед первым узлом будет выглядеть следующим образом:
var
GivenNode, NewNode : PSimpleNode;
begin
• • •
New(NewNode);
.. задать значение поля Data..
NewNode^.Next := MyLinkedList;
MyLinkedList := NewNode;
а удаление будет выглядеть так:
var
GivenNode, NodeToGo : PSimpleNode;
begin
• • •
NodeToGo := GivenNode^.Next;
MyLinkedList := NodeToGo^.Next;
Dispose(NodeToGo);
Обратите внимание, что код вставки элемента будет работать даже в случае, когда исходный список пуст, т.е. содержит nil, а код удаления элемента правильно установит содержимое связного списка в случае удаления из него последнего узла.
Прохождение связного списка также не представляет никаких трудностей. Фактически мы переходим от узла к узлу по указателям Next до достижения указателя nil, который свидетельствует об окончании списка.
var
FirstNode, TempNode : PSimpleNode;
begin
• • •
TempNode := FirstNode;
while TempNode <> nil do
begin
Process(TempNode^.Data);
TempNode := TempNode^.Next;
end;
В этом простом цикле процедура Process (определенная в другом месте) выполняет обработку поля Data переданного ей узла. Очистка связного списка требует небольшого изменения алгоритма, чтобы гарантировать, что мы не ссылаемся на поле Next после освобождения узла (довольно‑таки частая ошибка).
var
MyLinkedList, TempNode, NodeToGo : PSimpleNode;
begin
NodeToGo := MyLinkedList;
while NodeToGo <> nil do
begin
TempNode := NodeToGo^.Next;
Dispose(NodeToGo);
NodeToGo := TempNode;
end;
MyLinkedList :=nil;
Теперь, когда мы научились проходить по узлам связного списка, давайте вернемся к вопросу, который, наверное, появился у вас пару абзацев назад. А что если нам нужно вставить узел перед заданным узлом? Как это сделать? Единственным решением такой задачи для односвязного списка является прохождение списка и поиск узла, перед которым мы должны вставить новый узел. При прохождении будут использоваться две переменных: одна будет указывать на текущий, а вторая на предыдущий узел (родительский узел, если можно так сказать). Когда будет найден заданный узел, у нас будет указатель на предыдущий узел, что позволит использовать алгоритм вставки после заданного узла. В коде это выглядит следующим образом:
var
FirstNode, GivenNode, TempNode,
ParentNode : PSimpleNode;
begin
ParentNode := nil;
TempNode := FirstNode;
while TempNode <> GivenNode do
begin
ParentNode := TempNode;
TempNode := ParentNode^.Next;
end;
if TempNode = GivenNode then begin
if (ParentNode = nil) then begin
NewNode^.Next := FirstNode;
FirstNode := NewNode;
end
else begin
NewNode^.Next := ParentNode^.Next;
ParentNode^.Next := NewNode;
end;
end;
Обратите внимание на специальный код для случая вставки нового узла перед первым узлом (в этом случае родительский узел nil). Код для вставки перед заданным узлом медленнее кода вставки после заданного узла, поскольку он требует прохождения списка с целью обнаружения родительского узла заданного узла. В общем случае, при необходимости вставки нового узла перед заданным мы будет использовать двухсвязный список, который будет подробно рассмотрен немного ниже.