Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕХМЕХ_КУРСОВАЯ_КОРСИКОВ_ИСТ-31.docx
Скачиваний:
9
Добавлен:
01.05.2025
Размер:
822.5 Кб
Скачать

13. Проверочный расчёт передачи на контактную прочность при действии пиковой нагрузки (при кратковременной перегрузке).

Цель данного расчета – проверка статической прочности зубьев при кратковременных перегрузках, не учтенных при расчете на сопротивление контактной усталости. Предельно допускаемое контактное напряжение , не вызывающее остаточных деформаций или хрупкого разрушения поверхностного слоя обычно определяют для менее прочного зубчатого колеса. В нашем примере менее прочным является колесо, для которого по табл. 1П.9 приложения 1П [1, c.371] (материал колеса – сталь 40Х, , где – см. табл. 1П.7 приложения 1П [1, c.370].

Тогда условие контактной прочности при действии пиковой нагрузки:

(2.67)

где – кратковременная перегрузка привода (см. исходные данные); – см. п. 10.

.

Условие контактной прочности выполняется.

14. Проверочный расчёт передачи при изгибе пиковой нагрузкой (при кратковременной перегрузке).

Цель данного расчета – проверка статической прочности зубьев при кратковременных перегрузках, не учтенных при расчете зубьев на сопротивление усталости при изгибе. При этом расчет проводят отдельно для шестерни и колеса.

Предельно допускаемое напряжение изгиба, не вызывающее остаточных деформаций или хрупкого излома зуба, для принятого варианта термообработки по табл. 1П.9 приложения 1П [1, c.371]:

(2.68)

;

..

Тогда условие прочности передачи при изгибе пиковой нагрузкой:

(2.69)

;

,

где и – см. п. 12.

Таким образом, прочность зубьев при изгибе пиковой нагрузкой обеспечивается.

15. Определение сил в зацеплении конической передачи. Равнодействующую сил нормального давления обычно считают приложенной в среднем сечении зуба на диаметре и раскладывают на три составляющие: окружную силу радиальную силу и осевую силу .

Однако, прежде чем определить силы , и , установим направление вращения шестерни конической передачи. Это направление будет зависеть от того, в каком направлении должен вращаться приводной вал. Обычно приводные валы цепных и ленточных конвейеров нереверсивны, т.е. вращаются только в одном направлении. При этом направление вращения приводного вала выбирается таким образом, чтобы грузовая ведущая ветвь тягового элемента (цепи или ленты) набегала на приводную тяговую звездочку (у цепного конвейера) или барабан (у ленточного конвейера). Грузовой чаще всего является верхняя ветвь тягового элемента. В нашем примере редуктор устанавливается в приводе цепного конвейера, где направление вращения приводного вала указано на схеме привода. Для того, чтобы обеспечить указанное направление (против часовой стрелки) необходимо, чтобы шестерня конической передачи вращалась по часовой стрелке, если смотреть на нее с вершины делительного конуса.

Определим теперь величины сил , и .

В отличие от передачи с прямыми зубьями, в которой осевая сила на шестерне всегда направлена от вершины делительного конуса к основанию, в передаче с круговыми зубьями такое наблюдается не всегда. В последней может быть случай, когда сила направлена от основания к вершине конуса.

Осевая сила на шестерне , будет положительна, т.е. направлена от вершины конуса к основанию в том случае, если направление линии зуба шестерни совпадает с направлением её вращения (если смотреть на шестерню с вершины конуса). Например, направление линии зуба шестерни правое, направление её вращения - по часовой стрелке или направление линии зуба шестерни левое, направление её вращения - против часовой стрелки (см. рис. 4,а, б в табл. 1П.23 приложения 1П [1, c.383]).

Осевая сила на шестерне направлена от основания к вершине конуса в том случае, если направление линии зуба шестерни не совпадает с направлением её вращения (см. рис. 5, а, б табл. 1П.23 приложения 1П [1, c.383]). Следует отметить, что последний случай может наблюдаться в реверсивных передачах.

Рекомендации по определению сил в зацеплении конической передачи с круговыми зубьями приведены в табл. 1П.23 приложения 1П [1, c.382].

В нашем примере мы установили, что шестерня должна вращаться по часовой стрелке. Следовательно, для того, чтобы осевая сила на шестерни была направлена от вершины конуса к основанию, принимаем направление линии зуба шестерни - правое, колеса - левое. Тогда окружная сила на шестерне и колесе , где – см. п. 10.

Для нахождения радиальной и осевой сил на шестерне определим предварительно коэффициенты радиальной осевой , сил для случая, когда направление линии зуба шестерни совпадает с направлением её вращения:

(2.70)

;

(2.71)

.

Тогда:

радиальная сила на шестерне

(2.72)

;

осевая сила на шестерне

(2.73)

;

осевая сила на колесе ;

радиальная сила на колесе .

Схема сил для данного случая приведена на рис. 7,а (см. табл. 1П.23 приложения 1П [1, c.384]).