
- •Кр №3 «Медицинская электроника»
- •1.Электробезопасность при работе с электромедицинской аппаратурой. Методы обеспечения безопасности
- •2.Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током)
- •3.Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности
- •4. Электрический импульс и импульсный ток. Виды импульсов
- •Импульсный сигнал и его характеристики.
- •Токи Ледюка.
- •Синусоидально-модулированный ток
- •Дифференцирующая ячейка.
- •Интегрирующая ячейка.
- •Получение ддт
- •5. Шкала электромагнитных волны
- •6.Использование электромагнитных полей в физиотерапии (увч - терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Принцип диатермии
- •Принцип индуктотермии.
- •7, 8. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм
- •9. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков
- •10. Электроды. Основные требования к электродам. Классификация
- •Эквивалентная схема входной цепи диагностического прибора.
- •1. Электроды для кратковременного применения. Эти электроды используются в кабинетах функциональной диагностики:
- •Эквивалентная схема входной цепи диагностического прибора.
- •12. Датчики медико-биологической информации
- •Классификация датчиков
- •13. Основные метрологические характеристики датчиков и методы их определения.
- •Амплитудная характеристика датчика
- •Принцип определения времени реакция датчика.
- •14. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •15. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики). Их преимущества и недостатки. Температурный коэффициент сопротивления термисторных датчиков.
- •17.Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Датчик из углеродистой резины
- •Датчик оксигемографа
- •18.Датчики тканевого обмена веществ (катионочувствительный и микроспектро-фотометрический датчики). Катионочувствительный датчик
- •Микроспектрофотометрическии датчик
- •19. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Виды физиологических сигналов и их характеристики.
- •20. Основные метрологические характеристики усилителей. Искажения в усилителях: виды, их происхождение, способы устранения. Временные зависимости с искажениями и без искажений.
- •Амплитудная характеристика усилителя
- •Частотные характеристики усилителя постоянного (а) и усилителя переменного (б) тока.
- •Эквивалентная схема входной цепи диагностического прибора
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •Обозначение транзисторов на электрических схемах
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •22.Устройство и принцип действия полевого транзистора. Его преимущество.
- •23.Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Многокаскадное усиление
- •24. Согласование входного и выходного сопротивлений усилительных каскадов.
- •25. Требования к уор. Метрологические характеристики аналоговых уор и методы их определения.
- •Амплитудная характеристика уор.
- •26. Аналоговые уор. Классификация, устройство, принцип действия, метрологические характеристики различных аналоговых уор.
- •27. Дискретные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Сигнализирующие устройства
- •Принтеры
- •28. Комбинированные уор. Классификация, устройство и принцип действия, метрологические характеристики различных уор.
- •30. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •31. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Блок-схема аналогового интегратора.
- •Принципиальная схема аналогового интегратора.
- •Временная диаграмма работы аналогового интегратора
- •32. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора
- •Блок-схема дискретного интегратора.
- •Временная диаграмма работы дискретного интегратора.
- •33. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •34. Устройство и принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика отыскания полосы прозрачности фильтра.
- •Принципиальная схема пассивного электрического фильтра.
- •Амплитудно-частотная характеристика полосового электрического фильтра.
- •35. Специальные методы обработки информации.
- •Типичный вид экг
Эквивалентная схема входной цепи диагностического прибора.
Е - ЭДС источника биопотенциалов; Rэ-к - переходное сопротивление «электрод-кожа»; Rвх - входное сопротивление усилителя биопотенциалов; IВХ - величина входного тока, обусловленного напряжением входного сигнала E; Uвх - величина входного напряжения УБП.
По закону Ома: IBX = Е / ( Rэ-к + Rвх) .
Тогда: Uвх = Iвх • Rвх = E • Rвх / (Rэ-к + Rвх).
Из последней формулы видно, что если Rэ-к → 0, то Uвх → Е.
Для сухой кожи человека Rэ-к = 100 кОм.
Существует несколько способов уменьшения сопротивления «электрод- кожа»:
подбор материала электрода. При этом используют благородные металлы: золото, платину, серебро и т.д., которые плохо окисляются. Окислы металлов являются диэлектриками. Поэтому электроды из хорошо окисляющихся металлов стараются не использовать.
использование специальных прокладок между электродами и кожей, смоченных токопроводящими пастами или шампунями;
увеличение поверхности электродов. При этом так как R = ρ • l/s, где ρ - удельное сопротивление, l - длина электрода, s - площадь соприкосновения с кожей, то при увеличении площади соприкосновения R будет уменьшаться.
Однако следует отметить, что увеличение площади электродов ведёт к ухудшению помехозащищенности электродов и к снижению их информативности, так как увеличивается площадь, с которой снимается электрический сигнал.
12. Датчики медико-биологической информации
Многие медицинские параметры являются неэлектрическими, поэтому их нельзя снять с помощью электродов. Тем не менее, эти параметры необходимо регистрировать и обрабатывать с целью диагностики и лечения. Для этих целей служат датчики медико-биологической информации.
Датчики - специальные устройства, преобразующие неэлектрические сигналы в электрические на уровне, необходимом для регистрации. В общем случае датчик состоит из воспринимающего элемента и преобразователя.
Схема датчика
ЧЭ – чувствительный элемент; ПС – преобразователь сигнала.
Классификация датчиков
Датчики |
|||
Техническая классификация: (по техническому принципу преобразования параметра в электрический сигнал) |
Генераторные (активные) Изменение регистрируемого сигнала приводит к возникновению или изменению ЭДС (не требуют внешнего источника питания). |
Параметрические(пассивные) Изменение регистрируемого сигнала приводит к изменению параметров (требуют внешнего источника питания). |
Энергетические (активные и пассивные) Они сами активно воздействуют на органы и ткани. Эти датчики создают не- модулированный энергетический поток в организме, который модулируется измеряемым параметром. |
Физическая классификация: (какой физический закон лежит в основе преобразования) |
|
|
1.Фотоэлектрический. 2. Ультразвуковой. |
Медицинская классификация (по применению датчика) |
|