
- •Кр №3 «Медицинская электроника»
- •1.Электробезопасность при работе с электромедицинской аппаратурой. Методы обеспечения безопасности
- •2.Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током)
- •3.Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности
- •4. Электрический импульс и импульсный ток. Виды импульсов
- •Импульсный сигнал и его характеристики.
- •Токи Ледюка.
- •Синусоидально-модулированный ток
- •Дифференцирующая ячейка.
- •Интегрирующая ячейка.
- •Получение ддт
- •5. Шкала электромагнитных волны
- •6.Использование электромагнитных полей в физиотерапии (увч - терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Принцип диатермии
- •Принцип индуктотермии.
- •7, 8. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм
- •9. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков
- •10. Электроды. Основные требования к электродам. Классификация
- •Эквивалентная схема входной цепи диагностического прибора.
- •1. Электроды для кратковременного применения. Эти электроды используются в кабинетах функциональной диагностики:
- •Эквивалентная схема входной цепи диагностического прибора.
- •12. Датчики медико-биологической информации
- •Классификация датчиков
- •13. Основные метрологические характеристики датчиков и методы их определения.
- •Амплитудная характеристика датчика
- •Принцип определения времени реакция датчика.
- •14. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •15. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики). Их преимущества и недостатки. Температурный коэффициент сопротивления термисторных датчиков.
- •17.Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Датчик из углеродистой резины
- •Датчик оксигемографа
- •18.Датчики тканевого обмена веществ (катионочувствительный и микроспектро-фотометрический датчики). Катионочувствительный датчик
- •Микроспектрофотометрическии датчик
- •19. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Виды физиологических сигналов и их характеристики.
- •20. Основные метрологические характеристики усилителей. Искажения в усилителях: виды, их происхождение, способы устранения. Временные зависимости с искажениями и без искажений.
- •Амплитудная характеристика усилителя
- •Частотные характеристики усилителя постоянного (а) и усилителя переменного (б) тока.
- •Эквивалентная схема входной цепи диагностического прибора
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •Обозначение транзисторов на электрических схемах
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •22.Устройство и принцип действия полевого транзистора. Его преимущество.
- •23.Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Многокаскадное усиление
- •24. Согласование входного и выходного сопротивлений усилительных каскадов.
- •25. Требования к уор. Метрологические характеристики аналоговых уор и методы их определения.
- •Амплитудная характеристика уор.
- •26. Аналоговые уор. Классификация, устройство, принцип действия, метрологические характеристики различных аналоговых уор.
- •27. Дискретные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Сигнализирующие устройства
- •Принтеры
- •28. Комбинированные уор. Классификация, устройство и принцип действия, метрологические характеристики различных уор.
- •30. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •31. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Блок-схема аналогового интегратора.
- •Принципиальная схема аналогового интегратора.
- •Временная диаграмма работы аналогового интегратора
- •32. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора
- •Блок-схема дискретного интегратора.
- •Временная диаграмма работы дискретного интегратора.
- •33. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •34. Устройство и принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика отыскания полосы прозрачности фильтра.
- •Принципиальная схема пассивного электрического фильтра.
- •Амплитудно-частотная характеристика полосового электрического фильтра.
- •35. Специальные методы обработки информации.
- •Типичный вид экг
Временная диаграмма работы дискретного интегратора.
Достоинством такого интегратора является то, что информация считывается за строго определенное время (период интегрирования), задаваемое схемой управления, и выдается дискретно в виде ступеньки, амплитуда которой определяет электрическую активность органа за период интегрирования. Обработанная таким образом информация может непосредственно вводиться в ЭВМ.
33. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
Электрический фильтр - это четырехполюсник, который хорошо пропускает напряжения одних частот и плохо других частот.
Четырёхполюсник - это электрическое устройство, имеющее две входные и две выходные клеммы.
Различают фильтры активные (содержат внутри источник энергии) и пассивные (не содержат внутри источника тока, работают на энергии сигнала).
Действие электрических фильтров основано на том, что сопротивление его отдельных частей зависит от частоты проходящего по ним тока, причем для индуктивных частей - индуктивное сопротивление равно: RL = ωL; для ёмкостных частей - ёмкостное сопротивление равно: Rc = 1/ωс. Как видно, эта зависимость противоположная. Поэтому ток более низкой частоты, включая и постоянный, проходит преимущественно по индуктивным, а ток более высокой частоты - по ёмкостным частям фильтра.
Метрологические характеристики фильтров.
Полоса прозрачности - тот диапазон частот, которые пропускаются фильтром без ослабления или с незначительным ослаблением (IIII).
Полоса непрозрачности - диапазон частот, которые значительно ослабляются фильтром (ПН).
Частоты среза фильтра - те частоты, которые разграничивают полосы прозрачности и непрозрачности.
Классификация фильтров
Частотная характеристика фильтров - это график зависимости величины затухания (ослабления), вносимого фильтром, от частоты пропускаемого сигнала. По расположению полосы прозрачности на частотной характеристике различают четыре группы фильтров:
34. Устройство и принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика отыскания полосы прозрачности фильтра.
В медицине, чаше всего, для выделения того или иного вида потенциала применяют полосовые или режекторные фильтры.
Основой пассивного полосового фильтра является колебательный контур
Принципиальная схема пассивного электрического фильтра.
Период
собственных колебаний контура определяется
по формуле Томсона: Т = 2π
.
Если на вход такого фильтра подавать
постоянное по амплитуде напряжение
разных частот, то амплитуда выходного
напряжения существенным образом
будет зависеть от соотношения частоты
входного напряжения и собственной
частоты контура, определяемой по формуле
Томсона.
При совпадении этих частот в данной электрической цепи будет наблюдаться явление электрического резонанса. При этом амплитуда таких колебаний резко возрастает.
Работа фильтра оценивается амплитудно-частотной характеристикой, то есть зависимостью амплитуды выходного сигнала от частоты входного сигнала при постоянной амплитуде входного сигнала.