
- •Кр №3 «Медицинская электроника»
- •1.Электробезопасность при работе с электромедицинской аппаратурой. Методы обеспечения безопасности
- •2.Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током)
- •3.Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности
- •4. Электрический импульс и импульсный ток. Виды импульсов
- •Импульсный сигнал и его характеристики.
- •Токи Ледюка.
- •Синусоидально-модулированный ток
- •Дифференцирующая ячейка.
- •Интегрирующая ячейка.
- •Получение ддт
- •5. Шкала электромагнитных волны
- •6.Использование электромагнитных полей в физиотерапии (увч - терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Принцип диатермии
- •Принцип индуктотермии.
- •7, 8. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм
- •9. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков
- •10. Электроды. Основные требования к электродам. Классификация
- •Эквивалентная схема входной цепи диагностического прибора.
- •1. Электроды для кратковременного применения. Эти электроды используются в кабинетах функциональной диагностики:
- •Эквивалентная схема входной цепи диагностического прибора.
- •12. Датчики медико-биологической информации
- •Классификация датчиков
- •13. Основные метрологические характеристики датчиков и методы их определения.
- •Амплитудная характеристика датчика
- •Принцип определения времени реакция датчика.
- •14. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •15. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики). Их преимущества и недостатки. Температурный коэффициент сопротивления термисторных датчиков.
- •17.Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Датчик из углеродистой резины
- •Датчик оксигемографа
- •18.Датчики тканевого обмена веществ (катионочувствительный и микроспектро-фотометрический датчики). Катионочувствительный датчик
- •Микроспектрофотометрическии датчик
- •19. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Виды физиологических сигналов и их характеристики.
- •20. Основные метрологические характеристики усилителей. Искажения в усилителях: виды, их происхождение, способы устранения. Временные зависимости с искажениями и без искажений.
- •Амплитудная характеристика усилителя
- •Частотные характеристики усилителя постоянного (а) и усилителя переменного (б) тока.
- •Эквивалентная схема входной цепи диагностического прибора
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •Обозначение транзисторов на электрических схемах
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •22.Устройство и принцип действия полевого транзистора. Его преимущество.
- •23.Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Многокаскадное усиление
- •24. Согласование входного и выходного сопротивлений усилительных каскадов.
- •25. Требования к уор. Метрологические характеристики аналоговых уор и методы их определения.
- •Амплитудная характеристика уор.
- •26. Аналоговые уор. Классификация, устройство, принцип действия, метрологические характеристики различных аналоговых уор.
- •27. Дискретные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Сигнализирующие устройства
- •Принтеры
- •28. Комбинированные уор. Классификация, устройство и принцип действия, метрологические характеристики различных уор.
- •30. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •31. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Блок-схема аналогового интегратора.
- •Принципиальная схема аналогового интегратора.
- •Временная диаграмма работы аналогового интегратора
- •32. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора
- •Блок-схема дискретного интегратора.
- •Временная диаграмма работы дискретного интегратора.
- •33. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •34. Устройство и принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика отыскания полосы прозрачности фильтра.
- •Принципиальная схема пассивного электрического фильтра.
- •Амплитудно-частотная характеристика полосового электрического фильтра.
- •35. Специальные методы обработки информации.
- •Типичный вид экг
Микроспектрофотометрическии датчик
Д
анный
датчик позволяет определить патологию
на клеточном уровне.
1 - источник света,
2 - волоконно-оптический
кабель,
3 - микропипетка;
4 - фотоприемник,
5 - поверхность клетки.
Схема микроспектрофотометрического датчика
При прохождении света через оптическую систему 2 фотоприемником 4 регистрируется спектр люминесценции (спектр поглощения). Спектр люминесценции (поглощения) определяется химическим составом вещества, на которое падает при этом световой поток. По виду спектра судят о качественном составе клетки. По интенсивности спектра судят о количестве вещества, содержащегося в данном месте клетки. Датчик является энергетическим.
Достоинством метода является анализ биохимических процессов в тканях на клеточном уровне, что позволяет получать наиболее достоверную информацию о развитии той или иной патологии.
19. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
Различные физиологические сигналы характеризуются тремя основными параметрами: амплитудой сигнала, динамическим диапазоном, полосой частот. Под динамическим диапазоном сигнала понимается отношение максимальной амплитуды сигнала к его минимальному значению.
Виды физиологических сигналов и их характеристики.
Физиологический сигнал |
Амплитуда сигнала, мВ |
Динамический диапазон |
Полоса частот, Гц |
ЭКГ (электрокардиограмма) |
0,3-3 |
10 |
0,5-400 |
ФКГ (фонокардиограмма) |
10- 100 |
10 |
20 - 800 |
РГ (реограмма) |
1-10 |
10 |
0,3-30 |
ЭМГ (электромиограмма) |
0,02-3 |
150 |
1-10000 |
ЭГТ (электрогастрограмма) |
0,01-0,4 |
40 |
0,02- 0,06 |
КТР (кожногальваническая реакция) |
0,1-2 |
20 |
0,01 -10 |
ЭЭГ (электроэнцефалограмма) |
0,002 - 0,1 |
50 |
0,3-80 |
Дельта-ритм |
0,01 -0,03 |
3 |
0,3-3,5 |
Тета-ритм |
0,02-0,04 |
2 |
3,5-8 |
Альфа-ритм |
0,02 - 1,00 |
5 |
8-13 |
Бета-ритм |
0,002-0,03 |
15 |
13-80 |
Для последующей обработки снятых с помощью электродов или датчиков физиологических сигналов и их анализа данные сигналы необходимо усилить до определённого уровня и не внести в усиленный сигнал искажения. Для этих целей в медицинских приборах применяются усилители биоэлектрических сигналов.
До недавнего времени электронные усилители выполнялись на радиолампах. В настоящее время они выполняются на транзисторах и интегральных микросхемах, что позволило значительно сократить их габариты, вес, энергопотребление, повысить их надёжность и улучшить параметры.
Исходя из частотного диапазона, усилители подразделяются на усилители постоянного тока и усилители переменного тока.