
- •Кр №3 «Медицинская электроника»
- •1.Электробезопасность при работе с электромедицинской аппаратурой. Методы обеспечения безопасности
- •2.Характеристика защиты электромедицинской аппаратуры (основные степени и классы защиты от поражения электрическим током)
- •3.Надёжность медицинской аппаратуры. Основные категории надёжности. Классификация медицинской аппаратуры по надёжности
- •4. Электрический импульс и импульсный ток. Виды импульсов
- •Импульсный сигнал и его характеристики.
- •Токи Ледюка.
- •Синусоидально-модулированный ток
- •Дифференцирующая ячейка.
- •Интегрирующая ячейка.
- •Получение ддт
- •5. Шкала электромагнитных волны
- •6.Использование электромагнитных полей в физиотерапии (увч - терапия, диатермия, дарсонвализация). Механизм действия на организм.
- •Принцип диатермии
- •Принцип индуктотермии.
- •7, 8. Механизм действия постоянного магнитного поля на организм. Механизм термического и атермического действия полей свч на организм
- •9. Блок-схема диагностического прибора, работающего в масштабе реального времени. Назначение отдельных блоков
- •10. Электроды. Основные требования к электродам. Классификация
- •Эквивалентная схема входной цепи диагностического прибора.
- •1. Электроды для кратковременного применения. Эти электроды используются в кабинетах функциональной диагностики:
- •Эквивалентная схема входной цепи диагностического прибора.
- •12. Датчики медико-биологической информации
- •Классификация датчиков
- •13. Основные метрологические характеристики датчиков и методы их определения.
- •Амплитудная характеристика датчика
- •Принцип определения времени реакция датчика.
- •14. Физические принципы работы термисторных, термоэлектрических, пьезоэлектрических, тензорезисторных, индуктивных, емкостных и индукционных датчиков.
- •15. Устройство и принцип действия датчиков температуры (термисторный и термоэлектрический датчики). Их преимущества и недостатки. Температурный коэффициент сопротивления термисторных датчиков.
- •17.Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
- •Датчик из углеродистой резины
- •Датчик оксигемографа
- •18.Датчики тканевого обмена веществ (катионочувствительный и микроспектро-фотометрический датчики). Катионочувствительный датчик
- •Микроспектрофотометрическии датчик
- •19. Виды физиологических сигналов и их характеристики. Назначение усилителя биоэлектрических сигналов. Основные требования к усилителям.
- •Виды физиологических сигналов и их характеристики.
- •20. Основные метрологические характеристики усилителей. Искажения в усилителях: виды, их происхождение, способы устранения. Временные зависимости с искажениями и без искажений.
- •Амплитудная характеристика усилителя
- •Частотные характеристики усилителя постоянного (а) и усилителя переменного (б) тока.
- •Эквивалентная схема входной цепи диагностического прибора
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •Обозначение транзисторов на электрических схемах
- •21. Устройство и принцип действия биполярного транзистора. Обозначение транзисторов на схемах.
- •22.Устройство и принцип действия полевого транзистора. Его преимущество.
- •23.Схема усилительного каскада на транзисторе. Назначение отдельных элементов усилительного каскада. Многокаскадное усиление.
- •Многокаскадное усиление
- •24. Согласование входного и выходного сопротивлений усилительных каскадов.
- •25. Требования к уор. Метрологические характеристики аналоговых уор и методы их определения.
- •Амплитудная характеристика уор.
- •26. Аналоговые уор. Классификация, устройство, принцип действия, метрологические характеристики различных аналоговых уор.
- •27. Дискретные уор. Классификация, устройство, принцип действия, метрологические характеристики различных уор.
- •Сигнализирующие устройства
- •Принтеры
- •28. Комбинированные уор. Классификация, устройство и принцип действия, метрологические характеристики различных уор.
- •30. Системы обработки медико-биологической информации. Основные требования, способы обработки. Классификация автоматических методов обработки.
- •31. Назначение, блок-схема, принципиальная схема и принцип действия аналогового интегратора.
- •Блок-схема аналогового интегратора.
- •Принципиальная схема аналогового интегратора.
- •Временная диаграмма работы аналогового интегратора
- •32. Назначение, блок схема, принципиальная схема и принцип действия дискретного интегратора
- •Блок-схема дискретного интегратора.
- •Временная диаграмма работы дискретного интегратора.
- •33. Частотные анализаторы (электрические фильтры). Метрологические характеристики, классификация.
- •34. Устройство и принцип действия пассивного электрического фильтра. Амплитудно-частотная характеристика полосового фильтра. Методика отыскания полосы прозрачности фильтра.
- •Принципиальная схема пассивного электрического фильтра.
- •Амплитудно-частотная характеристика полосового электрического фильтра.
- •35. Специальные методы обработки информации.
- •Типичный вид экг
17.Устройство и принцип действия датчиков параметров системы дыхания (контактный датчик, датчик из углеродистой резины, турбинный датчик, датчик оксигемографа).
Существует целая группа датчиков, предназначенных для анализа параметров системы дыхания. Они отличаются как конструктивно, так и по форме преобразования регистрируемого параметра в электрический сигнал. Такими измерительными системами оцениваются: частота дыхания, величина дыхательного объема, минутный объем дыхания (МОД), оксигенация крови и т.д.
Контактный датчик. Данный датчик применяется для фиксации моментов периодически повторяющихся движений грудной клетки.
1, 2 – электрические контакты;
3 – резиновая лента.
Схема контактного датчика
Конструктивно датчик выполнен из резиновой ленты 3 с двумя контактами 1 и 2, которые замыкаются при вдохе и размыкаются при выдохе. Недостатком измерительной системы с таким датчиком является невозможность записи дыхательной кривой. Данный датчик является пассивным, так как требует внешнего источника питания.
Датчик из углеродистой резины
Этот датчик относится к параметрическим. Активная часть датчика выполнена из резины на основе углерода.
1 – углеродистая резина
Схема датчика из углеродистой резины
При изменении длины датчика изменяется его сопротивление, так как сопротивление датчика определятся длиной датчика и площадью cix> поперечного сечения. При приложении к резине разности потенциалов по ней протекает ток, изменяющийся в такт изменения сопротивления, а, следовательно, с частотой вдоха и выдоха.
Турбинный датчик Датчик применяется для определения объема вдыхаемого или выдыхаемого воздуха. Датчик состоит из дыхательной маски 3, в которой расположена турбина 4 с зеркальными накладками на лопастях. Свет от источника 1 попадает на зеркала и, отражаясь, регистрируется фотоприёмником 2. Полученные импульсы фототока пропорциональны частоте вращения турбины. Зная частоту и количество импульсов можно определить объем вдыхаемого и выдыхаемого воздуха.
Схема турбинного датчика
Турбинный датчик является также энергетическим, так как отражённый световой поток модулируется объёмом вдыхаемого или выдыхаемого воздуха.
Датчик оксигемографа
Датчик позволяет регистрировать насыщенность крови оксигемоглобином.
1 - светофильтр для получения
монохроматического света;
2 - ткань;
3 - фотосопротивление;
4 - источник света.
Схема датчика оксигемографа.
По ткани 2 протекает поток крови, и, в зависимости от се насыщенности оксигемоглобином, изменяется ослабление величины светового потока, а это определяет величину сопротивления фоторезистора 3. Чем больше в крови оксигемоглобина, тем меньше поглощение света кровью и больше величина фототока в цепи фоторезистора, т.к. меньше величина сопротивления. Таким образом, данный датчик также является энергетическим.
18.Датчики тканевого обмена веществ (катионочувствительный и микроспектро-фотометрический датчики). Катионочувствительный датчик
Для анализа процессов в тканях его вводят внутриклеточно. Оценка процессов в тканях производится путем анализа концентраций ионов Na+, К+ Mg+ и т.д. на клеточном уровне. Микропипетка из стекла вводится в ткань. Диаметр ее около 1 мкм. Она обогащена каким-то щелочным металлом. Измеряется ве личина разности потенциалов между микропипеткой и обычным микроэлектродом. При этом величина регистрируемой разности потенциалов пропорциональна концентрации ионов в клетке. При равенстве концентраций ионов в клетке и микропипетке выходное напряжение равно нулю. Путем подбора микропипеток с различной степенью обогащённости ионами можно определить концентрацию соответствующих ионов внутри клетки.