
- •Я.М. Ханик, є.М. Семенишин, о.В. Станіславчук, д.П. Кіндзера
- •2.1. Загальна характеристика 75
- •Розділ і
- •1.1. Загальна характеристика
- •1.2. Теплові баланси
- •1.3. Основне рівняння теплопередачі
- •1.4. Передача тепла теплопровідністю
- •1.4.1. Температурне поле і температурний градієнт
- •1.4.2. Закон Фур’є
- •1.4.3. Диференційне рівняння теплопровідності
- •1.4.4. Рівняння теплопровідності плоскої стінки
- •1.4.5. Рівняння теплопровідності циліндричної стінки
- •1.5. Теплове випромінювання
- •1.5.1. Теоретичні основи теплового випромінювання
- •1.5.2. Закон Стефана – Больцмана
- •1.5.3. Закон Кірхгофа
- •1.5.4. Взаємне випромінювання двох тіл
- •1.5.5. Випромінювання і поглинання енергії газами
- •1.6. Передача тепла конвекцією
- •1.6.1. Закон Ньютона – Ріхмана
- •1.6.2. Диференціальне рівняння конвективного теплообміну
- •1.6.3. Теплова подібність
- •1.6.4. Дослідні дані з тепловіддачі
- •1.6.4.1. Тепловіддача без зміни агрегатного стану
- •1.6.4.2. Тепловіддача із зміною агрегатного стану
- •1.6.4.4. Теплообмін під час безпосереднього контакту фаз
- •1.7. Складна тепловіддача
- •1.8. Теплопередача
- •1.8.1. Теплопередача за постійних температур
- •1.8.2. Теплопередача за змінних температур теплоносіїв
- •1.8.3. Рівняння теплопередачі для прямотечійного і протитечійного процесів теплообміну
- •1.8.4. Вибір взаємного напрямку теплоносіїв
- •Нагрівання, охолодження і конденсація
- •2.1. Загальна характеристика
- •2.2. Гріючі агенти і способи нагрівання
- •2.2.1. Нагрівання водяною парою
- •2.2.2. Нагрівання глухою парою
- •2.2.3. Нагрівання “гострою парою”
- •2.2.4. Нагрівання гарячою водою
- •2.2.5. Нагрівання димовими газами
- •2.2.6. Нагрівання високотемпературними теплоносіями
- •2.2.6.1. Нагрівання перегрітою водою
- •2.2.6.2. Нагрівання мінеральними мастилами
- •2.2.6.3. Нагрівання висококиплячими органічними рідинами і їхньою парою
- •2.2.6.4. Нагрівання розплавленими солями
- •2.2.6.5. Нагрівання ртуттю та рідкими металами
- •2.2.7. Нагрівання газоподібними високотемпературними теплоносіями з нерухомим і циркулюючим твердим зернистим матеріалом
- •2.2.8. Нагрівання електричним струмом
- •2.2.8.1. Нагрівання електричним опором
- •2.2.8.2. Індукційне нагрівання
- •2.2.8.3. Високочастотне нагрівання
- •2.2.8.4. Дугові печі
- •2.3. Охолодження
- •2.3.1. Охолодження до звичайних температур
- •2.3.2. Охолодження льодом
- •2.3.3. Конденсація
- •Конструкції теплообмінних апаратів
- •3.1. Трубчасті теплообмінники
- •3.1.1. Кожухотрубні теплообмінники
- •3.1.2. Елементні теплообмінники
- •3.1.3. Двотрубчасті теплообмінники типу “труба в трубі”
- •3.2. Змійовикові теплообмінники
- •3.2.1. Занурені теплообмінники
- •3.2.2. Зрошувальні теплообмінники
- •3.2.3. Пластинчасті теплообмінники
- •3.2.4. Реберні теплообмінники
- •3.2.5. Спіральні теплообмінники
- •3.2.6. Теплообмінні пристрої реакційних апаратів
- •3.2.7. Теплообмінники інших типів
- •3.2.8. Порівняльна характеристика теплообмінних апаратів
- •3.2.9. Розрахунок теплообмінних апаратів
- •Тепловий розрахунок:
- •Приклади до і–ііі розділів
- •Контрольні задачі до і–ііі розділів
- •Контрольні запитання до і–ііі розділів
- •Теплове випромінювання.
- •Теплова подібність.
- •Складна тепловіддача.
- •Нагрівання гарячою водою.
- •Трубчасті теплообмінники.
- •Змійовикові теплообмінники.
- •Порівняльна характеристика теплообмінних апаратів.
- •Основні залежності та розрахункові формули до і–ііі розділів Теплопровідність
- •Тепловіддача
- •Значення коефіцієнта
- •Значення At і·Bt для води
- •Теплопередача за безпосереднього контакту потоків
- •Випарювання
- •4.1. Загальні відомості
- •4.2. Однокорпусні випарні установки
- •4.2.1. Схема однокорпусної випарної установки
- •4.2.2. Матеріальний баланс однокорпусної випарної установки
- •4.2.3. Тепловий баланс однокорпусної випарної установки
- •4.2.4. Температурні втрати та температура кипіння розчинів
- •4.3. Багатокорпусні випарні установки
- •4.3.1. Схеми багатокорпусних випарних установок
- •4.3.2. Матеріальний баланс
- •4.3.3. Тепловий баланс
- •4.3.4. Загальна корисна різниця температур та її розподіл по корпусах
- •4.3.5. Розподіл загальної корисної різниці температур
- •4.3.6. Вибір кількості корпусів
- •4.4. Конструкції випарних апаратів
- •4.4.1. Класифікація апаратів для випарювання
- •4.4.2. Апарати з вільною циркуляцією розчину
- •4.4.3. Вертикальні апарати з напрямленою природною циркуляцією
- •4.4.4. Апарати з внутрішньою нагрівальною камерою і центральною циркуляційною трубою
- •4.4.5. Апарати з підвісною нагрівальною камерою
- •4.4.6. Апарати з виносними циркуляційними трубами
- •4.4.7. Апарати з виносною нагрівальною камерою
- •4.4.8. Апарати з винесеною зоною кипіння
- •4.4.9. Прямотечійні (плівкові) апарати
- •4.4.10. Роторні прямотечійні апарати
- •4.4.11. Апарати з примусовою циркуляцією
- •Контрольні запитання до IV розділу
- •4. Однокорпусні випарні установки.
- •5. Матеріальний баланс.
- •25. Конструкції випарних апаратів.
- •27. Апарати з підвісною нагрівальною камерою.
- •29. Апарати з виносною нагрівальною камерою.
- •Основні залежності та розрахункові формули до іv розділу
- •Приклади задач до IV розділу
- •Контрольні задачі до IV розділу
- •Приклад розрахунку трикорпусної випарної установки
- •Від депресії
- •Додатки
- •Коефіцієнти дифузії деяких газів у воді за 20 с
- •Властивості насиченої водяної пари залежно від тиску
- •Фізичні властивості насиченої пари аміаку
- •Основні фізичні властивості деяких газів
- •Фізичні властивості насиченої пари аміаку
- •Властивості насиченої водяної пари залежно від температури
- •Тиск насиченої водяної пари за температур від –20 до 100 с
- •Література
Розділ і
ТЕПЛОВІ ПРОЦЕСИ
1.1. Загальна характеристика
Технологічні процеси, швидкість перебігу яких визначається швидкістю підведення або відведення тепла, називаються тепловими процесами. До теплових процесів відносять нагрівання, охолодження, випарювання і конденсацію. В теорії теплообміну вивчаються процеси розповсюдження тепла в твердих, рідких і газоподібних середовищах. Існує три різних за своєю природою елементарних способи перенесення тепла: теплопровідність, конвекція і теплове випромінювання.
Теплопровідністю називають процес розповсюдження тепла внаслідок хаотичного руху мікрочастинок, які знаходяться безпосередньо в контакті між собою. Для газів і крапельних рідин – це рух самих молекул, для твердих тіл – коливання атомів в кристалічній решітці, для металів – дифузія вільних атомів. Для твердих тіл теплопровідність є основним видом передачі тепла.
Конвекцією називають процес розповсюдження тепла внаслідок руху і перемішування макроскопічних об’ємів рідини або газу.
Перенесення тепла може відбуватись в умовах природної конвекції, обумовленої різницею густин в різних точках об’єму рідини (газу), що виникає за різниці температур в цих точках, або в умовах вимушеної конвекції під час вимушеного руху усього об’єму рідини (перемішування мішалкою, переміщення насосами та вентиляторами).
Тепловим випромінюванням називають процес розповсюдження тепла у вигляді електромагнітних хвиль різної довжини, обумовлений тепловим рухом атомів або молекул тіла, яке випромінює тепло. Усі тіла здатні випромінювати енергію, яка поглинається іншими тілами і перетворюється в тепло.
На практиці розповсюдження тепла найчастіше відбувається одночасно двома–трьома вищевказаними способами, тобто відбувається складний теплообмін. Наприклад, у разі теплообміну між твердою стінкою і газовим середовищем тепло передається одночасно конвекцією, теплопровідністю та випромінюванням.
Перенесення тепла від стінки до газоподібного (рідкого) середовища або в зворотному напрямку називається тепловіддачею.
Процес передачі тепла від більш нагрітої рідини (газу) до менш нагрітої через розділювальну стінку називають теплопередачею.
Під час перебігу процесу теплопередачі перенесення тепла конвекцією супроводжується теплопровідністю та тепловим випромінюванням. Однак один з видів розповсюдження тепла є переважаючим в кожному конкретному випадку.
Встановленими (стаціонарними) називають процеси теплообміну, які здійснюються в неперервно діючих апаратах, і температури в різних точках є сталими у часі. У періодично діючих апаратах, де температури змінюються в часі (під час нагрівання та охолодження), здійснюються невстановлені (нестаціонарні) процеси теплообміну.
1.2. Теплові баланси
Під час процесу теплообміну тепло, що віддається більш нагрітим теплоносієм (Q1) на нагрівання холоднішого теплоносія (Q2), деяка порівняно невелика частина тепла витрачається на компенсацію втрат тепла апаратом в довкілля (Qвтр). Для теплообмінних апаратів, вкритих тепловою ізоляцією, величина (Qвтр) не перевищує 3–5 % корисно використовуваного тепла, тому під час розрахунків її до уваги не беруть. Тоді тепловий баланс можна записати як
Q = Q1 = Q2,
де Q – теплове навантаження апарата.
Рівняння теплового балансу
, (1.1)
де G1, І1п, І1к – відповідно масова витрата більш нагрітого теплоносія і його ентальпія на вході в апарат і на виході з апарата; G2, І2п, І2к – відповідно масова витрата холоднішого теплоносія і його ентальпія на вході в апарат і на виході з апарата.
Якщо теплообмін відбувається без зміни агрегатного стану теплоносіїв, то їхні ентальпії можна визначити так:
;
;
;
,
де с1п і с1к – середні питомі теплоємності більш нагрітого теплоносія в межах зміни температур від 0 оС до t1п (на вході в апарат) і до t1к (на виході з апарата) відповідно; с2п і с2к – середні питомі теплоємності холоднішого теплоносія в межах зміни температур від 0 оС до t2п (на вході в апарат) і до t2к (на виході з апарата) відповідно.
У першому наближенні замість середніх питомих теплоємностей у вираз ентальпій можна підставляти дійсні питомі теплоємності, значення яких відповідають середньоарифметичній температурі. Під час технічних розрахунків величину ентальпії знаходять для заданої температури з теплових та ентропійних діаграм або з довідникових таблиць.
Якщо під час теплообміну відбувається зміна агрегатного стану або він супроводжується тепловими ефектами, то необхідно врахувати тепло, що виділяється під час фізичного або хімічного перетворення. Рівняння (1.1) описує тепловий баланс процесу теплообміну, під час якого відбувається конденсація насиченої пари, а І1п, І1к є ентальпіями пари та парового конденсату.
У разі використання перегрітої пари рівняння теплового балансу запишеться так:
, (1.2)
де r – питома теплота конденсації, Дж/кг; сп і ск – питомі теплоємності пари і конденсату, Дж/(кгград); tк – температура конденсату на виході з апарата.
Добуток витрати теплоносія G на його середню питому теплоємність с умовно називають водяним еквівалентом W, який чисельно визначає масу води, що за своєю теплоємністю є еквівалентною до кількості тепла, необхідної для нагрівання цього теплоносія на 1 оС, за заданої її витрати. Тобто теплоємності рідин (с1 і с2), які обмінюються теплом, можна прийняти такими, що не залежать від температури і рівняння теплового балансу запишеться
; (1.3)
,
(1.4)
де W1 і W2 – водяні еквіваленти нагрітого і холодного теплоносіїв відповідно.