Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Клиническая анестезиология. В трёх томах. Дж. Эдвард Морган-мл. / Клиническая анестезиология. В трёх томах. Том 2. Дж. Эдвард Морган-мл..doc
Скачиваний:
2662
Добавлен:
14.06.2014
Размер:
5.24 Mб
Скачать

1 Частота импульсов автоматически изменяется в зависимости от потребности в сердечном выбросе.— Примеч. Пер.

коагулятора) непредсказуемо, поэтому его надо опробовать еще до начала операции.

Какие анестетики применяют при ЭКС?

У пациентов с установленным кардиостимулято-ром безопасно использовать любые анестетики. По-видимому, даже ингаляционные анестетики не влияют на порог стимуляции. Для имплантации постоянного кардиостимулятора прибегают к мест­ной анестезии с легкой в/в седацией.

Как оценить функцию постоянного электрода для эндокардиальной ЭКС после установки?

Функцию постоянного электрода в окончательной позиции анализируют на внешнем тестирующем ус­тройстве, которое измеряет порог стимуляции, им­педанс электрода и амплитуду воспринимаемых по­тенциалов. При начальной выходной амплитуде импульса в 5 В и длительности импульса 0,5 mc час­тоту ЭКС увеличивают до тех пор, пока не будет на­вязан 100 % захват импульсов. После достижения этой точки выходную амплитуду начинают медлен­но снижать для определения минимальной выход­ной амплитуды, при которой сохраняется 100 % захват импульсов (синонимы: пороговое напряже-

ние, порог стимуляции). Порог стимуляции для же­лудочков должен быть не выше 0,8 В, а для предсер­дий — не выше 1,5 В. Импеданс отведения должен составлять 250-1000 Ом при номинальном выходе 5 В. Амплитуда воспринимаемых потенциалов дол­жна быть > 6 мВ для желудочковых электродов и > 2 мВ — для предсердных.

Избранная литература

Brown D. L. Risk and Outcome in Anesthesia, 2nd ed. Lippincott, 1992.

Braunwald E. Heart Disease, 4th ed. Saunders, 1992.

Goldman L. Cardiac risk in noncardiac surgery: an update. Anesth. Analg., 1995; 80: 810.

Hensley F. A., Martin D. E. A Practical Approach to Cardiac Anesthesia, 2nd ed. Little, Brown, 1995.

Kaplan J. A. Cardiac Anesthesia, 3rd ed. Saunders, 1993.

Lynch C. Clinical Cardiac Electrophysiology, Lippin­cott, 1994.

Mangano D. T. Preoperative Cardiac Assessment. Lippincott, 1990.

Wood M., Wood A. J. J. Drugs and Anesthesia: Pharmacology for the Anesthesiologist, 2nd ed. Williams & Wilkins, 1990.

21 Анестезия в сердечно­сосудистой хирургии

Анестезия в сердечно-сосудистой хирургии требу­ет не только понимания физиологии, патофизио­логии и фармакологии кровообращения, но также и знания методик проведения операций, искусст­венного кровообращения (ИК) и защиты миокар­да. Кардиохирургические манипуляции воздей­ствуют на систему кровообращения, поэтому анестезиолог должен внимательно следить за хо­дом операции и своевременно предупреждать воз­никновение осложнений на любом ее этапе.

В настоящей главе дан обзор анестезии в сер­дечно-сосудистой хирургии, а также рассматрива­ются принципы, методики и физиология ИК. Кро­ме того, в ней обсуждаются анестезиологические аспекты при операциях на аорте, сонных артериях и перикарде.

Искусственное кровообращение

Искусственное кровообращение — это метод, по­зволяющий отвести венозную кровь от сердца, удалить CO2, насытить кровь кислородом и вер­нуть в крупную артерию (обычно в аорту). При ИК полностью прекращается кровоток в сердце и большая часть кровотока через легкие. Аппарат искусственного кровообращения (АИК) последо­вательно соединен с системным кровообращением и обеспечивает газообмен и перфузию. К сожале­нию, ИК абсолютно нефизиологично, поскольку АД, как правило, оказывается ниже нормы, а по­ток крови чаще всего имеет непульсирующий ха­рактер. Чтобы свести к минимуму повреждения органов во время ИК, обычно применяют систем­ную гипотермию (20-28 0C). Для защиты сердца используют также местную гипотермию (талым льдом) и кардиоплегию (подавление электричес­кой активности миокарда специальным раст­вором).

Работа с АИК — сложный процесс, требующий непрерывного внимания высококвалифицирован-

ного специалиста — перфузиолога. Наладить оп­тимальный режим ИК можно только при тесном взаимодействии хирурга, анестезиолога и перфу­зиолога.

Основной контур

Аппарат искусственного кровообращения (АИК) состоит из пяти основных компонентов: венозный резервуар, оксигенатор, теплообменник, главный насос и артериальный фильтр (рис. 21-1). В совре­менных моделях АИК есть одноразовый моноблок, в котором объединены резервуар, оксигенатор и теплообменник. Большинство моделей АИК снаб­жены также отдельными вспомогательными насо­сами, которые предназначены для забора крови из раны (кардиотомический отсос), дренажа ЛЖ и кардиоплегии. Помимо того, используют дополни­тельные фильтры, тревожную сигнализацию, а также встроенные мониторы давления, SO2 и тем­пературы.

Перед началом применения АИК заправляют раствором (1500-2000 мл для взрослых), в котором не должно быть пузырьков воздуха. Обычно ис­пользуют сбалансированный солевой раствор, но в него часто добавляют другие компоненты: кол­лоиды (альбумин или гидроксиэтилированный крахмал), маннитол (для защиты почек), гепарин (500-1000 единиц), бикарбонат и калий (если не предполагается проведение кардиоплегии). В нача­ле ИК гемодилюция в большинстве случаев приво­дит к снижению гематокрита до 25 %. Кровь, во из­бежание чрезмерной гемодилюции, используют в качестве заправочного раствора только у малень­ких детей, а также у взрослых с выраженной анемией.

Резервуар

В резервуар АИК кровь от больного (обычно из правого предсердия) поступает через одну или две венозных канюли под действием силы тяжес­ти. Поскольку венозное давление в норме низкое, то движущая сила прямо пропорциональна разно-

сти высоты между пациентом и резервуаром и об­ратно пропорциональна сопротивлению канюль и трубок. Заправка АИК приводит к эффекту сифо­на. Попадание воздуха в резервуар становится причиной возникновения воздушной пробки, пре­пятствующей току крови. Уровень жидкости в ре­зервуаре является критическим параметром: если резервуар опустошается, воздух может попасть в главный насос и вызвать летальную воздушную эмболию. Как правило, в АИК имеется тревожная сигнализация, предупреждающая о низком уровне жидкости в резервуаре.

Оксигенатор

Под действием силы тяжести кровь поступает из нижней части венозного резервуара в оксигена-тор. В настоящее время используют два типа окси-генаторов — пузырьковые и мембранные. Они от­личаются по способу контакта крови с газовой смесью (главным образом с кислородом), проходя­щей через оксигенатор. Кроме того, в патрубок по­дачи газовой смеси нередко добавляют CO2 и инга­ляционные анестетики.

А. Пузырьковые оксигенаторы. В пузырько­вых оксигенаторах газообмен происходит при прямом контакте газа с кровью. Венозная кровь взаимодействует с кислородом, поступающим че-

рез маленькие отверстия на дне оксигенатора. В результате образуется много крошечных пу­зырьков (пена). Чем меньше размер пузырьков, тем больше площадь поверхности газообмена. Затем пузырьки удаляются посредством пропус­кания крови через пеногаситель (электрически заряженный силиконовый полимер). Степень ok-сигенации зависит от величины потока, площади поверхности газообмена (размера и числа пузырьков) и времени прохождения крови через колонку оксигенатора. Удаление CO2 прямо про­порционально потоку кислорода pi обычно не представляет проблемы. Таким образом, PaO2 и PaCO2 взаимосвязаны и зависят от потока кисло­рода. Если регуляцию КОС проводят в режиме рН-stat (см. ниже), то иногда необходимо добав­ление CO2. Как правило, пузырьковые оксигена­торы дешевле мембранных; но их главный недо­статок состоит в том, что они травмируют форменные элементы крови. Чем дольше длится ИК, тем выраженнее повреждение. Если продол­жительность ИК не превышает 2 ч, существенной травмы форменных элементов крови в пузырько­вых оксигенаторах не происходит. В этом случае конструктивные различия между обоими типами оксигенаторов клинически не проявляются.

Б. Мембранные оксигенаторы. Взаимодей­ствие между кровью и газом в мембранных оксиге-

Рис. 21-1. Схема аппарата искусственного кровообращения. Месторасположение главного насоса в контуре зависит от типа оксигенатора: насос помещают дистальнее пузырькового оксигенатора, но проксимальнее мембранного, поскольку последний создает большее сопротивление потоку крови

наторах осуществляется через очень тонкую газо­проницаемую силиконовую мембрану. Оксигена-ция обратно пропорциональна толщине слоя кро­ви, находящегося в контакте с мембраной, тогда как PaCO2 (как и в пузырьковых оксигенаторах) зависит от газового потока. Поскольку FiO2 может варьироваться, мембранные оксигенаторы позво­ляют независимо управлять PaO2 и PaCO2. Мемб­ранные оксигенаторы меньше повреждают фор­менные элементы крови, поэтому их следует использовать при длительном ИК.

Теплообменник

Кровь из оксигенатора поступает в теплообмен­ник. Здесь она охлаждается или нагревается, в за­висимости от температуры воды, циркулирующей в обменнике (4-42 0C); теплопередача происходит в результате кондукции. Растворимость газов сни­жается при повышении температуры крови, по­этому для улавливания любых пузырьков, которые могут образоваться при согревании крови, в аппа­рате установлен фильтр.

Основной насос

В современных моделях АИК для перекачивания крови применяют либо роликовые, либо центри-фужные насосы.

А. Роликовый насос создает поток путем пере­жатия трубки большого диаметра вращающимся роликом в главной насосной камере. Неполное пе­режатие трубки предотвращает чрезмерное по­вреждение эритроцитов. Благодаря постоянной скорости вращения роликов кровь выталкивается независимо от встречаемого сопротивления, так что возникает постоянный непульсирующий по­ток, величина которого прямо пропорциональна числу вращений в минуту. Некоторые модели на­сосов снабжены запасной батареей аварийного пи­тания для работы в случае неполадок в электро­снабжении. Все роликовые насосы имеют ручной привод.

Б. Центрифужный насос состоит из несколь­ких соосно соединенных конусов в пластиковом корпусе. Когда они вращаются, создающиеся цент­робежные силы нагнетают кровь от расположенно­го в центре впускного штуцера к периферии. Производительность центрифужных насосов, в от­личие от таковой у роликовых, зависит от дав­ления в системе и потому подлежит контролю электромагнитным расходомером. Повышение давления в контуре дистальнее насоса уменьшает поток, что должно быть компенсировано увеличе­нием скорости работы насоса. В центрифужных

насосах не используют окклюзию, вследствие чего в них меньше повреждается кровь, чем в роликовых. В. Пульсирующий поток. Некоторые модели роликовых насосов формируют пульсирующий поток крови. Пульсация создается или мгновенны­ми колебаниями скорости вращения роликовых головок, или добавляется уже после того, как по­ток сгенерирован. Центрифужные насосы не спо­собны обеспечить пульсирующий поток. По мне­нию некоторых специалистов пульсирующий поток улучшает перфузию тканей, способствует лучшей экстракции кислорода в тканях, ослабляет высво­бождение стрессорных гормонов и обеспечивает меньшее ОПСС во время ИК. Эти наблюдения под­тверждены в экспериментальных исследованиях, обнаруживших улучшение почечного и мозгового кровообращения у животных при перфузии пуль­сирующим потоком.

Артериальный фильтр

Микрочастицы (тромбы, частицы жира, кальцие­вые депозиты, фрагменты тканей) попадают в кро-воток при ИК регулярно. Для предупреждения системной эмболии необходимо установить фильтр на линии артериальной магистрали (диа­метр пор 27-40 мкм). Кроме того, вспомогатель­ные фильтры подсоединяют и в других участках контура. После фильтрации кровь поступает к больному через канюлю в восходящей аорте. Нормально функционирующий аортальный кла­пан предотвращает ретроградный заброс крови из восходящей аорты в ЛЖ.

Параллельно с артериальным фильтром монти­руют шунт, который в нормальных условиях пере­жат. Это нужно на случай, если фильтр засоряется или создает большое сопротивление. По той же причине давление в артериальной магистрали из­меряют перед фильтром. Фильтр также позволяет улавливать пузырьки воздуха, которые удаляются с помощью встроенного трехходового крана.

Вспомогательные насосы и устройства

А. Кардиотомический отсос. Насос кардиотоми-ческого отсоса удаляет кровь из хирургического поля во время PlK и возвращает ее в венозный ре­зервуар основного насоса. Для этой цели можно использовать и так называемый cell-saver — осо­бым образом сконструированный отсос, не разру­шающий клетки и снабженный отдельным резер­вуаром. В конце операции кровь из резервуара cell-saver'a центрифугируют, отмывают и вводят больному. Избыточное разрежение, возникающее при технических погрешностях, приводит к допол-

нительному повреждению эритроцитов. Чрезмер­ное использование cell-saver'a во время ИК умень­шает объем крови в контуре АИК. Обычный ва­куумный отсос (подключенный к больничной системе разводки) очень сильно повреждает эрит­роциты, поэтому кровь из его резервуара не подле­жит реинфузии.

Б. Дренаж ЛЖ. В процессе проведения ИК кровь скапливается в ЛЖ в результате остаточно­го кровотока в легких по бронхиальным артериям (которые ответвляются непосредственно от аор­ты или межреберных артерий), в тебезиевых сосу­дах (гл. 19) или из-за аортальной регургитации. Аортальная регургитация возникает по причине органических (аортальная недостаточность) или функциональных (хирургические манипуляции на сердце) нарушений. Растяжение ЛЖ кровью пре­пятствует защите миокарда и требует декомпрес­сии (дренажа). В большинстве кардиохирургичес-ких центров дренаж выполняют с помощью катетера, введенного в ЛЖ через правую верхнюю легочную вену и левое предсердие. Реже катетер вводят через верхушку ЛЖ. Кровь, дренируемую из ЛЖ, пропускают через фильтр и возвращают в венозный резервуар.

В. Кардиоплегический насос. Для подачи кар-диоплегического раствора чаще всего используют встроенный в АИК вспомогательный насос. Это устройство позволяет оптимально контролировать давление в системе, объемную скорость инфузии и температуру. Отдельный теплообменник обеспе­чивает управление температурой кардиоплегичес-кого раствора. При упрощенном варианте охлаж­денный кардиоплегический раствор вводят под давлением из пластикового мешка.

Г. Ультрафильтр. Ультрафильтрацию при ИК иногда применяют для повышения гематокрита без трансфузии. Ультрафильтры состоят из полых капиллярных волокон, которые функционируют как мембраны, отделяя жидкую фазу крови от ее клеточных и белковых компонентов. К филь­тру кровь поступает или с артериальной стороны главного насоса, или от венозного резервуара с ис­пользованием вспомогательного насоса. Под дей­ствием гидростатического давления вода и элект­ролиты проходят через мембрану волокон. Скорость фильтрации — до 40 мл/мин.

Гипотермия и защита миокарда

Как правило, после начала ИК проводят преднаме­ренную гипотермию. Центральную температуру тела снижают до 20-28 0C. Метаболические по­требности организма в кислороде при уменьшении

температуры тела на каждые 10 0C снижаются в два раза. В конце операции больного согревают до нормальной температуры с помощью теплооб­менника. Глубокая гипотермия (15-18 0C) позво­ляет полностью прекратить кровообращение на период до 60 минут, что необходимо при некото­рых сложных операциях. В это время останавлива­ют и сердце, и АИК.

При кардиохирургических вмешательствах практически у всех больных повреждается мио­кард, что может быть обусловлено как эффектами анестезии, так и хирургическими манипуляциями, хотя чаще это связано с неадекватной защитой миокарда во время ИК. При правильной защите миокарда большинство повреждений обратимы. Причина ишемии, повреждения или некроза кар-диомиоцитов — несоответствие между доставкой и потреблением кислорода в миокарде. Риск интрао-перационного повреждения миокарда особенно ве­лик у пациентов, отнесенных к IV функционально­му классу по классификации Нью-Йоркской кардиологической ассоциации (табл. 20-11), при гипертрофии Л Ж и тяжелой ИБС. Свидетель­ством неадекватной защиты миокарда обычно слу­жат сохраняющийся по завершении ИК низкий сер­дечный выброс, признаки ишемии миокарда на ЭКГ и аритмии.

Пережатие аорты во время ИК полностью пре­кращает коронарный кровоток. Достоверного метода определения безопасной продолжительности пере­жатия аорты нет, поскольку велики индивидуальные различия между больными. Считается, что длитель­ность ИК > 120 мин нежелательна. Ишемия миокар­да при И К может возникать также до пережатия аор­ты или после снятия аортального зажима из-за артериальной гипотензии, эмболии коронарных ар­терий (тромбами, тромбоцитами, воздухом, жиром, депозитами кальция) травматичных хирургических манипуляций на сердце, приводящих к сдавлению или перекручиванию коронарных артерий. Наиболь­шему риску повреждения подвержены участки мио­карда, расположенные дистальнее коронарного сосу­да с высокой степенью обструкции.

Ишемия вызывает истощение запасов макроэр-гических фосфатных соединений и накопление внутриклеточного кальция. Последний, взаимо­действуя с сократительными белками, еще больше снижает энергетические запасы (гл. 19). Поддер­жание целостности и нормальной функции клеток во время ИК зависит от величины энергетических расходов и сохранности макроэргических фосфат­ных соединений. После прекращения коронарного кровотока главными источниками энергии в клет­ке становятся креатинфосфат и анаэробный мета-

болизм; окисление жирных кислот нарушается. К сожалению, эти источники энергии быстро исто­щаются, и развивается прогрессирующий ацидоз, препятствующий гликолизу. Помимо мер, направ­ленных на увеличение или пополнение энергети­ческих субстратов (инфузия глюкозы или глутама-та), особое внимание следует уделять снижению до минимума энергетических потребностей клеток. Это достигается с помощью системной и местной гипотермии (талым льдом), а также калиевой кар-диоплегии. Гипотермия уменьшает базальное по­требление кислорода, а калиевая кардиоплегия минимизирует расходы энергии, связанные с элек­трической и механической активностью сердца. Температуру сердца желательно поддерживать в пределах 10-15 0C.

Важными причинами повреждения миокарда являются фибрилляция желудочков и растяжение ЛЖ. При фибрилляции потребление кислорода мио­кардом может удвоиться, а растяжение не только повышает потребность в кислороде, но и снижает доставку кислорода, нарушая субэндокардиальиый кровоток. Особенно опасно сочетание фибрилля­ции и растяжения. Другие причины повреждения миокарда включают использование инотропных препаратов и передозировку кальция.

Калиевая кардиоплегия

Наиболее распространенный метод прекращения электрической активности миокарда состоит в перфузии сердца кристаллоидным раствором или кровью с повышенным содержанием калия. После начала ИК, индукции гипотермии и пережа­тия аорты в коронарные сосуды вводят холодный кардиоплегический раствор. В результате повыша­ется концентрация внеклеточного калия, что вы­зывает снижение трансмембранного потенциала (внутренняя сторона мембраны кардиомиоцита становится менее отрицательной). Низкий транс­мембранный потенциал препятствует нормально­му натриевому току при деполяризации, уменьшая наклон, амплитуду и скорость проведения после­дующих потенциалов действия (гл. 19). В конце концов натриевые каналы полностью инактивиру-ются, потенциалы действия исчезают и сердце ос­танавливается в фазу диастолы. Как правило, хо-лодовую кардиоплегию повторяют несколько раз (приблизительно каждые 30 минут) из-за посте­пенного вымывания раствора и согревания мио­карда. Вымывание обусловлено сохраняющимся неколлатеральным коронарным кровотоком из сосудов перикарда, которые являются ветвями межреберных артерий. Кроме того, повторное вве­дение кардиоплегического раствора улучшает за-

щиту миокарда, предотвращая чрезмерное накоп­ление продуктов обмена, препятствующих анаэ­робному метаболизму. Согревание задней стенки ЛЖ происходит в результате ее непосредственно­го контакта с нисходящей аортой, в которой нахо­дится более теплая кровь.

Типичная пропись раствора для калиевой кар-диоплегии приведена в табл. 21-1. Составы кардио-плегических растворов в разных кардиохирурги-ческих центрах отличаются, но их основные компоненты одни и те же. Концентрация калия не должна превышать 50 мэкв/л — в противном слу­чае могут возникнуть парадоксальное повышение энергетических потребностей миокарда и выра­женная перегрузка организма калием. Концентра­ция натрия в кардиоплегическом растворе меньше, чем в плазме, поскольку при ишемии содержание внутриклеточного натрия, как правило, возраста­ет. Небольшое количество кальция необходимо для поддержания целостности клеток; магний, по-видимому, ограничивает избыточный ток кальция внутрь клетки. Буфер (чаще всего применяют би­карбонат) позволяет предупредить чрезмерное на­копление кислых метаболитов; известно, что ще­лочные перфузаты обеспечивают лучшую защиту миокарда. Вместо бикарбоната можно использо­вать гистидин и трометамин (синонимы — THAM, трисамин). Применяют и другие компоненты: ос-модиуретики — для устранения клеточного отека (маннитол), кортикостероиды — для мембраноста-билизирующего эффекта, простациклин — для антиагрегантного эффекта, антагонисты кальция и (3-адреноблокаторы — для снижение метаболичес­ких потребностей, ингибиторы свободнорадикаль-ного окисления (маннитол). Энергетические суб­страты могут быть представлены глюкозой, глутаматом или аспартатом. Остается нерешен­ным вопрос, какая основа предпочтительнее для кардиоплегического раствора — кристаллоид или кровь. Доказано, что по крайней мере для не­которых групп больных высокого риска пред­почтительнее использовать кровь. Несомненно, кардиоплегия оксигенированной кровью имеет дополнительное преимущество, заключающееся

ТАБЛИЦА 21 -1. Состав кардиоплегического раствора

Калий

20-40 мэкв/л

Натрий

100-120 мэкв/л

Хлорид

110-120 мэкв/л

Кальций

0,7 мэкв/л

Магний

1 5 мэкв/л

Глюкоза

28 ммоль/л

Бикарбонат

27 м моль/л

в доставке большего количества кислорода, чем при использовании кристаллоида.

Кардиоплегический раствор не достигает обла­стей, расположенных дистальнее выраженной об­струкции коронарных артерий (тех зон, где по­требность в нем особенно велика), поэтому многие хирурги нагнетают раствор и ретроградно через коронарный синус.

Иногда применяют непрерывную нормотерми-ческую кардиоплегию. Эта методика может иметь преимущества перед перемежающейся гипотерми-ческой кардиоплегией в отношении защиты мио­карда, но отсутствие бескровного поля осложняет проведение операции. Более того, при нормотер-мических кардиохирургических вмешательствах отсутствует защитное действие гипотермии, осо­бенно в отношении головного мозга.

Избыточная кардиоплегияможет привести к по­тере электрической активности, AB-блокаде или снижению сократимости сердца в конце ИК. Не иск­лючено возникновение устойчивой системной ги­перкалиемии. Хотя введение кальция частично ней­трализует эти явления, его избыток сам по себе чреват дальнейшим повреждением миокарда. По мере того как кардиоплегический раствор вымыва­ется из сердца, деятельность сердца нормализуется.

Физиологические эффекты искусственного кровообращения

Гормональные и гуморальные реакции

Начало процедуры ИК приводит к выраженному увеличению концентрации в крови гормонов стрес­са — катехоламинов, кортизола, АДГи атиотензи-на. Этот феномен, по крайней мере частично, обус­ловлен опосредованным гипотермией снижением метаболизма, а также выключением из кровообра­щения легких, в которых инактивируются многие из перечисленных гормонов. Анестетики лишь не­значительно подавляют гормональную стрессовую реакцию на ИК.

Активируются многие гуморальные системы, включая системы комплемента, свертывания, фиб-ринолиза и калликреина. Контакт крови с внут­ренней поверхностью контура АИК активирует комплемент по альтернативному (фактор СЗ) или по классическому (фактор Хагемана, или XII) пу­тям. Фактор Хагемана, в свою очередь, активирует каскад свертывания, тромбоциты, плазминоген и калликреин. Механическая оперативная травма также активирует тромбоциты и нейтрофилы. Мо­жет развиться синдром системной воспалительной реакции, сходный с таковым при сепсисе и травме

(гл. 50). Если эта реакция интенсивная или дли­тельная, то возникает риск развития таких ослож­нений, как генерализованный отек, респиратор­ный дистресс-синдром взрослых (РДСВ) и острая почечная недостаточность.

ИК изменяет и уменьшает количество глико-протеиновых рецепторов на поверхности тромбо­цитов. В результате возникает дисфункция тром­боцитов, что увеличивает периоперационную кровопотерю и влечет за собой риск развития другой патологии свертывания (активации плаз-миногена, синдрома системной воспалительной реакции).

Влияние на фармакокинетику

С началом ИК резко снижается концентрация большинства лекарственных препаратов в плазме и сыворотке. Этот эффект обусловлен в основном увеличением объема распределения вследствие ге-модилюции и уменьшением связывания препара­тов с белками. Некоторые лекарственные средства (например, опиоиды) связываются с компонента­ми контура АИК.

В процессе проведения И К концентрация лекар­ственных препаратов может постепенно повы­шаться из-за снижения кровотока в печени и поч­ках (уменьшение элиминации) и гипотермии (снижение метаболизма). Кроме того, лекарствен­ные препараты способны перераспределяться из периферической камеры в центральную (гл. 8). Гепарин влияет на связывание препаратов с белка­ми: он высвобождает и активирует липопротеин-липазу, которая гидролизует триглицериды плаз­мы с выделением свободных жирных кислот. Последние, в свою очередь, конкурентно инги-бируют связывание лекарственных препаратов с белками плазмы. Изменение концентрации ссггликопротеина (которая увеличивается после операции) также влияет на связь лекарственных препаратов с белками.

Анестезия в хирургии сердца Взрослые

Предоперационное обследование и анестезия при сопутствующих сердечно-сосудистых заболевани­ях обсуждаются в главе 20. Принципы их проведе­ния одинаковы вне зависимости от того, какой операции подвергается больной — кардиохирурги-ческой или внесердечной. Главное различие состо­ит в том, что у пациентов, которым предстоит кар-диохирургическое вмешательство, заболевание

сердца более тяжелое; особое внимание у них необ­ходимо уделять выявлению адекватности сердеч­ного резерва. Адекватность сердечного резерва оценивают по многим параметрам: переносимости физической нагрузки, сократимости миокард а (на­пример, фракиия выброса), выраженности и мес­торасположению стенозов коронарных артерий; локальным нарушениям сократимости ЛЖ, КДД в полостях сердца, сердечному выбросу и градиен­ту трансклапанного давления (гл. 20). В отличие от внесердечных операций после кардиохирурги-ческих вмешательств функция сердца у большин­ства пациентов улучшается. В ходе предопераци­онного обследования оценивают также состояние легких, почек и нервной системы, поскольку их дисфункция сопряжена с риском послеоперацион­ных осложнений.