Добавил:
dipplus.com.ua Написание контрольных, курсовых, дипломных работ, выполнение задач, тестов, бизнес-планов Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
661.doc
Скачиваний:
17
Добавлен:
08.02.2020
Размер:
4.56 Mб
Скачать

3.2. Термодеформационное равновесие силовой системы электрод-детали-электрод при контактной точечной сварке с обжатием периферийной зоны соединения

Способы КТС с обжатием периферийной зоны соединений, описанные в п. 1.2.3, в которых обжатие осуществляют в области уплотняющего пояска (см. рис. 1.7), не нашли широкого практического применения в основном из-за относительно низкой стойкости токопроводящего электрода. Причиной этого является то, что обжатие деталей в области уплотняющего пояска вызывает необходимость уменьшения внутреннего диаметра обжимной втулки и, следовательно, наружного диаметра рабочей части токопроводящего электрода до значений, близких к диаметру ядра, которые значительно меньше стандартных. В результате токопроводящий электрод перегревается из-за высокой плотности тока и ухудшения условий его охлаждения вследствие уменьшения площади сечения его токопроводящей части. В связи с этим был разработан способ КТС с обжатием периферийной зоны соединений вне контура уплотняющего пояска, в котором силовое взаимодействие деталей значительно сложнее, чем при традиционных способах КТС, и уже не описывается уравнением (3.11).

3.2.1. Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска

Способ контактной точечной сварки с обжатием периферийной зоны соединений вне контура уплотняющего пояска [209] заключается в том, что в нем, как и в описанных выше, соединяемые детали сжимают токопроводящими электродами, прикладывают вокруг них дополнительное периферийное усилие для обеспечения сжатия в уплотняющем пояске и пропускают импульс сварочного тока. Отличается он тем, что дополнительное периферийное усилие прикладывают вне контура уплотняющего пояска.

При осуществлении данного способа КТС токопроводящие электроды 1 (рис. 3.2) с диаметром рабочей части DЭ и обжимные втулки 2 с внутренним диаметром dВВ и наружным диаметром dВН сжимают свариваемые детали 3, соответственно, усилиями токопроводящих электродов FЭ и обжимных втулок FО. В плоскости сварочного контакта эти усилия уравновешиваются силой FЯ, развиваемой давлением расплавленного металла в ядре (диаметром dЯ) по его площади, усилием в площади уплотняющего пояска FП и усилием в площади кольцевого контакта FК, расположенного вне контура уплотняющего пояска L1. Вследствие того, что при сварке металл вытесняется в направлении контакта деталь–деталь с образованием в контуре уплотняющего пояска L1 рельефа высотой hП, представляется возможным передавать часть усилия обжатия FО в зону сварки (в контур L1) за счет силового сопротивления деталей FУ их прогибу между контурами уплотняющего пояска L1 и кольцевого контакта L2. Таким образом, в зону сварки может быть передана часть усилия обжатия FО, прилагаемого между контурами L2 и L3, за вычетом его части, уравновешиваемой в кольцевом контакте FК и упругим сопротивлением деталей FД при их сближении до соприкосновения (передаваемое усилие не может быть больше усилия FУ сопротивления деталей их суммарному прогибу между контурами L1 и L2 на величину высоты рельефа hП). Это предоставляет возможность увеличить внутренние диаметры обжимных втулок dВВ и диаметры DЭ электродов и, следовательно, их стойкость.

Так, например, производилась сварка образцов из стали 12Х18Н10Т на машине МТПУ-300 с использованием цилиндрических обжимных втулок и электродов с плоской рабочей поверхностью из сплава Бр.Х. Параметры режимов, максимально допустимые внутренние диаметры обжимных втулок dВВМАХ, при которых обеспечивалась передача упругостью деталей технологически требуемого усилия сжатия в площади уплотняющего пояска (в приведенных примерах 95 % от FО) приведены в табл. 3.1.

При этом диаметры рабочих поверхностей dЭ задавались в соответствии с известными рекомендациями для обычных способов сварки, обеспечивающих наибольшую стойкость электродов. Диаметры же цилиндрических поверхностей электродов DЭ задавались по внутреннему диаметру обжимной втулки dВВ, которые определяли из условий способов: при сварке по способу с обжатием в области уплотняющего пояска dВВ задавались в пределах контура уплотняющего пояска dП, а при сварке по данному способу в пределах dВВМАХ.

Таблица 3.1

Параметры режимов и электродов при сварке с обжатием периферийной зоны соединения

Толщина деталей

s,

мм

Параметры режимов

Параметры соединения и

электродов, мм

IСВ,

кА

tСВ,

c

FСВ,

даН

FЭ,

даН

FО,

даН

dВВМАХ

мм

dЯ,

мм

dЭ

dП

DЭ

Прото тип

Новый

1+1

2+2

3+3

6,2

8,9

11,3

0,16

0,28

0,36

460

900

1350

270

548

830

190

360

520

7,7

15

34

5.0

7.0

9.0

5.0

8.0

10.0

6.5

9.4

11.9

6,0

9,0

11.0

8,0

16,0

25,0

Стойкость электродов оценивалась по количеству сваренных точек, приводящих к увеличению рабочих поверхностей электродов на 10 %. При этом получены следующие результаты: при сварке по способам с обжатием в области уплотняющего пояска и вне его среднеарифметическое количество точек при сварке трех серий образцов каждой толщины соответственно составило: 1 + 1 мм — 17 и 63; 2 + 2 мм — 23 и 187; 3 + 3 мм — 27 и 276. Таким образом, стойкость электродов при сварке по данному способу увеличивается в 4...10 раз, что показывает высокую эффективность данного способа в части повышения стойкости электродов.

Очевидно, что для способов КТС с обжатием периферийной зоны соединений необходима другая математическая модель силового взаимодействия деталей, учитывающая их особенности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]