Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика микроорганизмов.doc
Скачиваний:
54
Добавлен:
30.05.2014
Размер:
413.7 Кб
Скачать

13. Методы молекулярно-генетического анализа

Изучение генома микроорганизмов осуществляют с помощью методов молекулярно-генетического анализа. Известные в наше время методы этого анализа характеризуются сложностью, высокой чувствительностью и точностью.

Основным способом генетического анализа считают метод молекулярной гибридизации. Сущность способа заключается во взаимодействии комплементарных цепей ДНК или РНК, в результате которого образуются двунитчатые структуры. Гибридизация может осуществляться между комплементарными молекулами ДНК и ДНК, ДНК и РНК, РНК и РНК. Гибридизация осуществляют поэтапно. Сначала деспирализуют генетический материал с целью получения одноцепочных структур, затем адсорбируют его на нитроцеллюлозной мембране. Следующим этапом является обработка материала зондом, который представляет собой короткую последовательность нуклеиновой кислоты, комплементарной исследуемой кислоте и меченную радиоактивным фосфором. После обработки материала зондом, исследуемые пробы помещают в специальный счетчик. Искомую последовательность нуклеиновой кислоты в материале определяют по степени радиоактивности пробы. Метод высокочувствителен, т. к. позволяет выявить до 10-10 г. нуклеиновой кислоты в 1 г. материала.

В начале 80-х годов К. Мюллисом был разработан способ под названием полимеразная цепная реакция (ПЦР). Суть этого метода сводится к следующему. Исследуемый материал нагревают до 90-100 ºС, что приводит к раскручиванию 2-х цепочной ДНК на отдельные цепи. После расхождения цепей ДНК, к ним добавляют набор всех пуриновых и пиримидиновых оснований, праймеры и термостабильную ДНК, комплементарные той нуклеиновой кислоте, которую амплифицируют (накапливают). Затем смесь ДНК и праймеров охлаждают. При этом праймеры при наличии в смеси ДНК искомого гена связываются с его комплементарными участками. В результате синтезируются две копии гена. После этого цикл повторяют снова и снова. При каждом повторе цикла количество ДНК гена будет увеличиваться в 2 раза. Для проведения реакции необходимы специальные приборы – амплификаторы.

Этот метод позволяет обнаружить 100 молекул ДНК или РНК в 1 г. исследуемого материала, т. е. является самым высокочувствительным методом из всех известных в настоящее время.

ПЦР применяют для диагностики вирусных и бактериальных инфекций.

Анализ рекомбинаций фагов

Естественно, что гибридизация фагов, происходящая в период их внутриклеточного размножения, не может быть обнаружена, если клетка заражается фаговыми частицами одного генотипа. Не обнаруживается она и при смешанном заражении мутантом и нормальным фагом, так как гибридизация может быть выявлена лишь по рекомбинации признаков фагов двух генотипов. Накопление различных мутантных линий фагов оказалось необходимой предпосылкой проведения гибридизационной работы с фагами.

Очевидно, что для изоляции рекомбинантов необходимо различие между исходными формами минимум по двум признакам. Такой опыт был впервые проведен с фагом Т2 при смешанном заражении клеток Echerichia coli мутантами hR и Hr. В потомстве фагов, освобожденном при лизисе клеток, были обнаружены частицы дикого типа (Т2 НR)I и двойного мутанта. Появление таких рекомбинантных генотипов говорило о том, что при размножении фаговых частиц двух генотипов в одной бактерии происходит в той или иной форме гибридизации.

Для генетика возможно при обнаружении рекомбинантов количественно оценить частоту, с которой они появляются.

Рассмотрим скрещивание у фага Т4 между тройным мутантом (m r tu) и фагом дикого типа (M R Tu). В потомстве от смешанного заражения такими фагами наблюдались частицы восьми генотипов – следовательно, все рассматриваемые гены рекомбинируют. Если бы они рекомбинировали свободно, то все восемь классов в потомстве появились бы с равной численностью. В действительности же резко преобладают родительские типы (m r tu и M R Tu). Так, в одном опыте среди 10342 колоний было найдено родительских генотипов: m r tu – 3467, M R Tu – 3729; рекомбинантных: m R Tu – 520, M r tu – 474, m r Tu – 853, M R tu – 965, m R tu – 162, M r Tu – 172. Помимо преобладания родительских генотипов в потомстве, обращает на себя внимание и приблизительное равенство численностей взаимодополняющих рекомбинантных классов (например, m R Tu и M r tu), т.е. картина расщепления выглядит также, как картина расщепления в мейозе тригетерозиготы по специальным генам у любого высшего организма. Если это так, то можно по законам расщепления вычислить частоту встречаемости рекомбинантов.

Определим частоту рекомбинации для пары генов m и r, т.е. отношение числа рекомбинантов по этим генам к общему числу потомков:

(520+474+162+172) / 10342 =0,129

для пары r и tu частота рекомбинации будет равна 0,208, а для пары m и tu – 0,271. из этих результатов следует, что все три гена сцеплены и могут быть линейно расположены в порядке m-r-tu. Понятно, что найденная частота рекомбинации пары m и tu занижена, так как при ее определении не были учтены двойные обмены (генотипы m R tu и M r Tu).

Итак, генетический анализ рекомбинации у фагов может проводиться также, как и в генетике высших организмов. Анализ разнообразных скрещиваний у фага T4 показал, что все изученные гены фага могут быть расположены в линейном порядке в одной группе сцепления, причем расстояние между генами измеряются частотой рекомбинации их в потомстве. Такие же результаты были получены и для других фагов.

Гибридологический анализ при трансдукции.

Анализ аллельности с использованием абортивной трансдукции был выполнен в отношении различных мутаций у (Salmonella thyphimurium). Обнаружилось, что мутации потребности в триптофане распадаются на 4 группы: tru A, tru B, tru C, tru D, соответствующие 4 генам. При трансдукции между мутантами одной группы не наблюдается появления крошечных колоний. При трансдукции между мутантами разных групп крошечных колоний появляется столько же, как и тогда, когда донором служат бактерии дикого типа.

Поскольку фаг переносит небольшие фрагменты бактериальной хромосомы. То путем трандукции невозможно обнаружить сцепление и провести картирование удаленных друг от друга генов в бактериальной хромосоме. Если же два гена близко располагаются друг к другу, то они могут попадать в один хромосомный фрагмент, переносимый фагом, обнаруживая явление сцепленной трансдукции. Оно оказывается во многом сходным с разбиравшимся ранее явлением сцепленной трансформации. Обозначить его можно так:

АВ х ав

Трансдуктанты аВ, Ав, АВ.

Появление трансдуктантов АВ с двумя маркерами донора может свидетельствовать о тесном сцеплении генов АВ.

Сцепление может быть также обнаружено при трансдукции Ав х аВ, если частота трансдуктантов АВ здесь ниже, чем при трансдукции АВ х аВ.

Действительно, если А и В тесно сцеплены, то в первом случае фаг переносит фрагмент Ав, для образования трансдуктов АВ необходим кроссинговер между А и в, вероятность которого тем меньше, чем ближе располагаются эти гены. Во втором случае перенесенный фрагмент АВ, и трансдуканты АВ образуются, где бы не произошел кроссинговер, включающий это фрагмент в хромосому донора.

Как в действительности сказывается сцепление на частоте трансдуктантов в таких скрещиваниях, показывает таблица 3.

Таблица 3. влияние сцепления на частоту трансдукции.

Генотип реципиента

Генотип донора

Колич. Трансдуктов дикого типа в стандартных условиях

try

tru D10

0

try

Дикий тип

1822

try

met 15

1617

try

try B4

602

try

try C3

270

try

try D1

4

Примечание. Трансдуктанты дикого типа в скрещивании try D1 х try D10 являются результатом внутригенной рекомбинации, так как эти мутации относятся к одному гену и являются гетероаллельными.

Очевидно, что гены try D и met 15 не сцеплены, так как частота трансдуктантов дикого типа (АВ) не отличается от частоты их при трансдукции.

Дикий тип х try D10

Гены же try D, try В и try С сцеплены, поскольку при трансдукции рекомбинация между ними происходит реже.

Подробные опыты могут дать первое представление о расстоянии между генами. Определение генетических расстояний является здесь, однако, не точным, так как в экспериментах по трансдукции, также как и по трансформации, число рекомбинантов не может быть отнесено к общему числу потомков, рекомбинантных и родительских генотипов. Это происходит потому, что при трансдукции, например,

АВ х ав, трансдуктанты генотипов Ав и аВ (рекомбинантных), а также генотипа АВ (родительского) являются в действительности результатом двойного кроссинговера, включающего трансдуцированный фрагмент в хромосому донора.