Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции (преп. Шарипов И. З.).doc
Скачиваний:
87
Добавлен:
25.05.2014
Размер:
2.38 Mб
Скачать

4. Аморфное состояние металлов

При сверхвысоких скоростях охлажде­ния из жидкого состояния диффузионные процессы настолько за­медляются, что подавляется образова­ние зародышей и рост кристаллов. В этом случае при затвердевании обра­зуется аморфная структура. Материалы с такой структурой получили название аморфные сплавы или металлические стекла.

Аморфное состояние обеспечивает ме­таллическим материалам свойства, зна­чительно отличающиеся от свойств со­ответствующих материалов с кристал­лической структурой. Так, получены в аморфном состоянии так называемые магнитомягкие материалы, которые очень легко перемагничиваются, а так же магнитотвердые материалы, которые трудно размагнитить. При этом магнитные свойства материала малочувствительны к меха­ническим воздействиям на него. Удельное электри­ческое сопротивление аморфных метал­лических материалов в 2 — 3 раза выше, чем у аналогичных сплавов с кристалли­ческой структурой. Аморфные металли­ческие материалы удачно сочетают вы­сокие прочность, твердость и износо­стойкость с хорошей пластичностью и коррозионной стойкостью. Большое практическое значение имеет также и возможность получения аморфных металлов в виде ленты, проволоки диа­метром несколько микрометров непос­редственно при литье, минуя такие до­рогостоящие операции, как ковка, про­катка, волочение, промежуточные отжи­ги, зачистки, травление.

5. Полиморфизм

Ряду веществ свойственны не одна, а две и более структур, устойчивых при различных температурах и давлениях. Такие структуры называются полиморфными мо­дификациями, или полиморфными формами. Полиморфные модификации принято обозначать греческими буквами. Модификацию, устой­чивую при низких температурах, обозначают буквойα, а при более высоких - β.

Полиморфизм весьма распространенное явле­ние. Железо, титан, кобальт, олово, углерод, сегнетоэлектрики, кварц и многие другие материалы могут сущест­вовать в различных полиморфных модифи­кациях.

Естественно, полиморф­ные, модификации отличаются между собой не только структурой, но и свойствами. Например, α-олово, устойчивое ниже 13° С, является хрупким полупроводником, а β-олово— весьма вязкий металл.

При полиморфизме особо резкие изменения свойств наблюда­ются при изменении не только структуры, но и типа химической связи.

Полиморфизм играет в материаловедении и технологии важ­ную практическую роль. Переводя материал из одной поли­морфной модификации в другую, можно управлять его свойст­вами. Например, практически освоено получение алмазов из графита нагревом его под давлением 100000 атм. до температур примерно 2000° С.

III. Проводниковые материалы

Важнейшей характеристикой проводниковых материалов является их электропроводность. Электропроводность это величина обратная электрическому сопротивлению.

где σ – удельная электрическая проводимость;

ρ – удельное электрическое сопротивление.

Ее значение можно вычислить по формуле:

где n – концентрация носителей заряда;

q – величина заряда носителей;

μ – подвижность носителей заряда;

Подвижность носителей заряда характеризует скорость их перемещения под действием электрического поля (Рис. 26). Численно она равна скорости перемещения частиц под действием электрического поля единичной напряженности.

Рис. 26. Движение свободных носителей в проводнике.

На подвижность электронов в металле оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что эквивалентно снижению подвижности электронов. Наличие незаполненных внутренних электронных оболочек у атомов также снижает подвижность электронов. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов, с незаполненными внутренними электронными оболочками, существенно ниже электропроводности обычных металлов.

Концентрация носителей заряда n в металлах практически постоянна и не зависит от температуры. Носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. Валентные электроны становятся свободными и могут перемещаться по всему кристаллу, образуя «электронный газ». Чем плотнее упакована кристаллическая решетка металлов, тем выше плотность электронного газа, и, соответственно, выше проводимость материала. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

Все проводниковые материалы можно условно разделить на три группы: 1) материалы высокой электропроводности, используемые для изготовления проводников; 2) металлические материалы высокого удельного электрического сопротивления, применяемые для изготовления резисторов и нагревательных элементов; 3) материалы для изготовления контактов.

Очевидно, что у материалов высокой электропроводности и контактных материалов электропроводность должна быть велика, тогда как электропроводность материалов высокого электросопротивления должна быть мала.