
- •I. Строение веществ. 5
- •I. Строение веществ.
- •1. Межатомное взаимодействие.
- •2. Типы химических связей.
- •3. Кристаллическая структура твердых тел.
- •4. Дефекты кристаллических решеток.
- •4.1 Точечные дефекты решетки
- •4.2 Линейные дефекты кристаллической решетки.
- •4.3 Поверхностные дефекты кристаллической решетки.
- •4.4 Объёмные дефекты кристаллической решетки.
- •4.5 Энергетические дефекты кристаллической решетки.
- •5. Основы теории сплавов.
- •6. Диаграммы состояния сплавов и закономерности Курнакова.
- •7. Строение электронных зон. Проводники, диэлектрики и полупроводники.
- •II. Кристаллизация металлов
- •1. Самопроизвольная кристаллизация
- •2. Несамопроизвольная кристаллизация
- •3. Получение монокристаллов
- •4. Аморфное состояние металлов
- •5. Полиморфизм
- •III. Проводниковые материалы
- •1 Материалы высокой электропроводности.
- •2 Материалы высокого удельного сопротивления.
- •2.1 Сплавы на основе меди.
- •2.2 Никель-хромовые сплавы.
- •2.3 Железохромалюминиевые сплавы
- •2.4 Сплавы на основе благородных металлов.
- •3 Материалы электрических контактов
- •3.1 Зажимные контакты
- •3.2 Цельнометаллические контакты
- •3.3 Материалы разрывных контактов.
- •3.4 Материалы скользящих контактов.
- •IV. Магнитные материалы
- •1. Природа ферромагнетизма.
- •1.1. Доменная структура ферромагнетиков.
- •1.2. Кривая намагничивания
- •2. Основные классы магнитных материалов.
- •2.1. Промышленные магнитомягкие материалы
- •Электротехническая сталь
- •2.2 Магнитомягкие материалы для работы в слабых полях
- •2.3 Магнитомягкие материалы, предназначенные для работы в высокочастотных полях.
- •3. Магнитотвердые материалы
- •3.1 Промышленные магнитотвердые материалы.
- •3.2. Дисперсионно твердеющие сплавы
- •3.3 Деформируемые магнитотвердые материалы.
- •3.4 Магнитотвердые ферриты
- •3.5 Высококоэрцитивные магниты.
2. Несамопроизвольная кристаллизация
В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной или гетерогенной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы.
Наличие готовых центров кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток.
В жидком металле могут присутствовать и растворенные примеси, которые также вызывают измельчение структуры. Адсорбируясь на поверхности зарождающихся кристаллов, они уменьшают поверхностное натяжение на границе раздела жидкость - твердая фаза и линейную скорость роста кристаллов. Это способствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-активными.
3. Получение монокристаллов
Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными несовершенствами. Получение монокристаллов позволяет изучать свойства металлов, исключив влияние границ зерен. Применение в монокристаллическом состоянии германия и кремния высокой чистоты дает возможность использовать их полупроводниковые свойства и свести к минимуму неконтролируемые изменения электрических свойств.
Монокристаллы можно получить, если создать условия для роста кристалла только из одного центра кристаллизации. Существует несколько методов, в которых использован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.
Метод Бриджмена (рис. а) состоит в следующем: металл, помещенный в тигель с коническим дном 3, нагревается в вертикальной трубчатой печи 1 до температуры на 50-100 °С выше температуры его плавления. Затем тигель с расплавленным металлом 2 медленно удаляется из печи. Охлаждение наступает в первую очередь в вершине конуса, где и появляются первые центры кристаллизации. Монокристалл 4 вырастает из того зародыша, у которого направление преимущественного роста совпадает с направлением перемещения тигля. При этом рост других зародышей подавляется. Для непрерывного роста монокристалла необходимо выдвигать тигель из печи со скоростью, не превышающей скорость кристаллизации данного металла.
Схемы установок для выращивания монокристаллов
Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из монокристалла по возможности без структурных дефектов. Затравка вводится в поверхностный слой жидкого металла 4, имеющего температуру чуть выше температуры плавления. Плоскость затравки, соприкасающаяся с поверхностью расплава, должна иметь кристаллографическую ориентацию, которую желательно получить в растущем монокристалле 3 для обеспечения наибольших значений тех или иных свойств. Затравку выдерживают в жидком металле для оплавления и установления равновесия в системе жидкость-кристалл. Затем затравку медленно, со скоростью, не превышающей скорости кристаллизации, удаляют из расплава. Тянущийся за затравкой жидкий металл в области более низких температур над поверхностью ванны кристаллизуется, наследуя структуру затравки. Для получения симметричной формы растущего монокристалла и равномерного распределения примесей в нем ванна 5 с расплавом вращается со скоростью до 100 об/мин, а навстречу ей с меньшей скоростью вращается монокристалл.
Диаметр растущего монокристалла зависит от скорости выращивания и температуры расплава. Увеличение скорости выращивания ведет к выделению большей теплоты кристаллизации, перегреву расплава и уменьшению диаметра монокристалла, и, наоборот, уменьшение скорости выращивания приводит к уменьшению количества теплоты кристаллизации, понижению температуры расплава и увеличению диаметра монокристалла.