Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книга по теорверу Протасова!.doc
Скачиваний:
156
Добавлен:
20.05.2014
Размер:
3.52 Mб
Скачать

Сходимость последовательностей случайных величин и их распределений

В теории вероятностей в отличие от математического анализа рассматриваются несколько различных видов сходимости последовательности функций (случайных величин) и их распределений. Это связано с тем, что в теории вероятностей принято пренебрегать маловероятными событиями и делать это можно по разному. Ранее уже были определены поточечная сходимость случайных величин, сходимость почти наверное и сходимость вероятностных мер по вариации. Дадим еще два важных определения сходимости случайных величин – сходимость по вероятностиисходимость в среднеквадратическом, и одно определение сходимости распределений –слабая сходимость.

Сходимость по вероятности

Последовательность случайных величин

сходится к случайной величине

по вероятности, если

Сходимость по вероятности обозначается так

Сходимость в среднеквадратическом

Последовательность случайных величин

сходится к случайной величине

в среднеквадратическом (в L2) , если

Сходимость в среднеквадратическом обозначается так

Слабая сходимость распределений

Последовательность случайных величин

сходится к случайной величине

слабо (по распределению), если

во всех точках непрерывности функции

Слабая сходимость обозначается так

Основным отличием слабой сходимости от остальных видов сходимости является то, что от случайных величин не требуется, чтобы они были определены на одном вероятностном пространстве, так как условия сходимости формулируются с использованием только их функций распределения.

Взаимосвязь различных видов сходимости

Взаимосвязь различных видов сходимости представлена на следующей диаграмме.

Заметим, что ни одну из стрелок на данной диаграмме нельзя, вообще говоря, повернуть назад, т.е. любые два вида сходимости неэквивалентны. Практическое значение имеют, в основном, слабая сходимость и сходимость в среднеквадратическом потому что они позволяют производить приближенные вычисления вероятностей и математических ожиданий и заменять одни математические модели другими. Остальные виды сходимости используются в основном при доказательстве слабой сходимости или исследовании качественных свойств модели. Поэтому более подробно исследуем взаимосвязи этих двух видов сходимости в остальными.

Покажем, вначале, что из сходимости по вероятности следует слабая сходимость.

Теорема (P->W).

Пусть

.

Тогда

Доказательство.

Пусть x – точка непрерывности функции

.

Тогда

и

Таким образом

При малых и больших n левая и правая часть неравенства отличаются сколь угодно мало от, что доказывает теорему.

Доказательство завершено.

Обратная теорема верна при дополнительном условии.

Теорема (W->P).

Пусть

Тогда

Доказательство.

Доказательство завершено.

Покажем, что из сходимости в среднеквадратическом следует сходимость по вероятности.

Теорема (L2->P).

Пусть

Тогда

Доказательство.

Используем неравенство Маркова

.

Доказательство завершено.

Следующая теорема дает пример применения предыдущей теоремы для доказательства сходимости относительной частоты события к его вероятности в схеме Бернулли.

Закон больших чисел в форме Бернулли

Пусть - число успехов вn испытаниях по схеме Бернулли с вероятностью успехаp. Тогда

Доказательство.

Доказательство завершено.

Таким образом, для доказательства слабой сходимости достаточно доказать сходимость по вероятности или в среднеквадратическом.

При доказательстве теорем о слабой сходимости используется также следующая важная теорема.

Теорема ({Хелли-Брея).

Пусть

и

- непрерывная ограниченная функция. Тогда

.

Доказательство.

Любую непрерывную на всей прямой функциюможно сколь угодно точно приблизить линейной комбинацией ступенчатых функций на любом интервале [-A,A) , A>0.

Выберем A так, чтобы точки –A, A и точки разбиения

были бы точками непрерывности функции распределения

Тогда интегралы

одинаковым образом выражаются через значения функций распределения ии могут быть сделаны сколь угодно близкими выбором достаточно большого n. Следовательно, близки и интегралы

Так как функция ограничена, то выбором достаточно большого A можно сделать сколь угодно малыми интегралы

Теорема доказана.

Верна и обратная теорема.

Теорема (Обратная теорема Хелли-Брея)

Пусть для любой

непрерывной ограниченной функции

Тогда

Доказательство.

Идея доказательства аналогична идее доказательства предыдущей теоремы и основана на возможности приблизить ступенчатую функцию непрерывной функцией. Действительно, опять выбирая подходящие точки непрерывности и полагая

видим, что близкие между собой интегралы

можно сделать сколь угодно близкими, соответственно. к интегралам

Теорема доказана.

Так как

,

то последние две теоремы дают необходимые и достаточные условия слабой сходимости в терминах сходимости математических ожиданий от непрерывных ограниченных функций.

Теорема (f(W)).

Пусть

и

- непрерывная функция. Тогда

.

Доказательство.

Так как подстановка непрерывной функции в ограниченную непрерывную функцию приводит снова к непрерывной ограниченной функции, то доказательство этой теоремы напрямую следует из теорем Хелли-Брея.

Теорема доказана.

Нетрудно показать, что верна также следующая теорема

Теорема (f(P)).

Пусть

и

- непрерывная функция. Тогда

.

Доказательство этой и следующих двух теорем проведите самостоятельно в качестве упражнений.

Теорема (W+P->W).

Пусть

и

Тогда

Теорема (W*P->W).

Пусть

и

Тогда