- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Игра по крупному
- •Основные понятия и определения Первичные понятия Опыт (эксперимент)
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Информационный смысл понятия сигма - алгебра
- •Пересечение сигма-алгебр
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Теорема (о непрерывности вероятностной меры)
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Сходимость по вариации - приближение одних моделей другими
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Свойства случайных величин
- •Случайный вектор
- •Распределения случайных величин и векторов
- •Точки непрерывности и разрыва функции распределения
- •Несобственные функции распределения
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Теоремы о предельном переходе под знаком интеграла Лебега
- •Теорема Лебега о мажорируемой сходимости
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Неравенство Ляпунова.Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление интеграла Лебега в произведении пространств. Теорема Фубини
- •Теорема Фубини
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Абсолютная непрерывность вероятностных мер
- •Абсолютно непрерывные и сингулярные меры и распределения
- •Теорема Радона-Никодима
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Сходимость по вероятности
- •Сходимость в среднеквадратическом
- •Слабая сходимость распределений
- •Взаимосвязь различных видов сходимости
- •Закон больших чисел в форме Бернулли
- •Теорема Шеффе
- •Преобразование Лапласа и производящая функция
- •Теорема единственности для характеристических функций и характеристические функции важных распределений
- •Предельные теоремы теории вероятностей
- •Классическая схема
- •Закон больших чисел в форме Чебышева
- •Закон больших чисел для схемы серий
- •Закон больших чисел в форме Хинчина
- •Центральная предельная теорема в форме Леви Теорема Леви
- •Теорема Муавра-Лапласа
- •Центральная предельная теорема в форме Ляпунова
- •Условное математическое ожидание, условная вероятность и условное распределение
- •Определение и основные свойства условного математического ожидания
- •Теорема существования и единственности условного математического ожидания
- •Математическое ожидание одной случайной величины относительно другой
- •Свойства условного математического ожидания
- •Определение условной вероятности, условного распределения и условной плотности Условная вероятность
- •Условное распределение
- •Вычисление условной плотности и условного математического ожидания
Гамма-распределение.
Рассмотрим плотность
![]()
где
![]()
параметры распределения. Распределение с такой плотностью называется гамма распределение. Приведем график плотности этого распределения при
![]()

Величина
![]()
рассматриваемая как функция переменной
![]()
называется гамма-функцией и имеет следующие, легко доказываемые свойства

Это распределение обозначается
![]()
Гамма распределение обобщает экспоненциальное распределение и превращается в него при
![]()
Гамма распределение с целым параметром
![]()
называется
распределение Эрлангапорядка
и обозначается
![]()
Распределение
![]()
где n – целое, называется распределение хи-квадрати обозначается
![]()
Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
Борелевская сигма-алгебра на пространстве действительных векторов определяется аналогично борелевской сигма-алгебре на прямой с заменой прямоугольников
![]()
на параллелепипеды
![]()
Обозначим ее
![]()
Эта сигма-алгебра содержит все практически важные множества векторов. Множество, принадлежащее борелевской сигма-алгебре называется борелевское множество.
Определение случайного вектора
Пусть
![]()
основное вероятностное пространство
![]()
пространство векторов с борелевской сигма-алгеброй
![]()
|
Покажите, что координаты случайного вектора – случайные величины и, наоборот, вектор, составленный из случайных величин – случайный вектор |
поточечное измеримое отображение, ставящее в соответствие каждому элементарному исходу основного пространства действительный вектор. Это отображение называется случайный вектор. |
Вероятностная мера, определенная на борелевской сигма-алгебре по формуле
![]()
называется распределением случайного вектора.
Пусть
![]()
случайный вектор и
![]()
Функция
![]()
называется функция распределения (иначе - совместная функция распределения) случайного вектора
![]()
Аналогично одномерному случаю определяются дискретные и непрерывные случайные вектора и их распределения.
Плотность распределения случайного вектора f(x) – это функция, удовлетворяющая условию
![]()
Мера Лебега в конечномерном пространстве
Мера Лебега в конечномерном пространстве это мера, приписывающая параллелепипеду его объем. В частности, мера Лебега прямоугольника это его площадь.
Мера Лебега на квадрате - Задача о встрече
Рассмотрим следующую задачу.
Два человека договорились встретиться в определенном месте в течение часа и ждать друг друга не более 10 минут. Найти вероятность, того они встретятся, если момент прихода каждого совершенно случаен.
Для решения задачи построим следующую вероятностную модель. Исходом опыта является вектор
![]()
где первая координата – момент прихода первого человека, вторая – момент прихода второго. Сигма-алгебра – все борелевские подмножества единичного (1 час=1 единица времени) квадрата. Предположение о совершенной случайности моментов прихода приводит к вероятностной мере, которая приписывает каждому множеству единичного квадрата его площадь. Эта мера называется мера Лебега на квадрате. Подсчитаем вероятность интересующего нас события. Два человека встретятся, если
![]()
Площадь этой наклонной полосы

равна
![]()
Независимые случайные величины
Случайные величины
,
заданные на одном вероятностном пространстве, называются независимыми, если для любых борелевских множеств
![]()
|
В одну сторону доказательство очевидно |
Можно показать, что независимость случайных величин эквивалентна тому, что их совместная функция распределения
равна произведению их одномерных функций распределения
|
![]()
|
Это важно. Докажите! |
Если случайные величины независимы и имеют совместную плотность, то она является произведением их одномерных плотностей. Верно и обратное. |
