- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Игра по крупному
- •Основные понятия и определения Первичные понятия Опыт (эксперимент)
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Информационный смысл понятия сигма - алгебра
- •Пересечение сигма-алгебр
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Теорема (о непрерывности вероятностной меры)
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Сходимость по вариации - приближение одних моделей другими
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Свойства случайных величин
- •Случайный вектор
- •Распределения случайных величин и векторов
- •Точки непрерывности и разрыва функции распределения
- •Несобственные функции распределения
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Теоремы о предельном переходе под знаком интеграла Лебега
- •Теорема Лебега о мажорируемой сходимости
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Неравенство Ляпунова.Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление интеграла Лебега в произведении пространств. Теорема Фубини
- •Теорема Фубини
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Абсолютная непрерывность вероятностных мер
- •Абсолютно непрерывные и сингулярные меры и распределения
- •Теорема Радона-Никодима
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Сходимость по вероятности
- •Сходимость в среднеквадратическом
- •Слабая сходимость распределений
- •Взаимосвязь различных видов сходимости
- •Закон больших чисел в форме Бернулли
- •Теорема Шеффе
- •Преобразование Лапласа и производящая функция
- •Теорема единственности для характеристических функций и характеристические функции важных распределений
- •Предельные теоремы теории вероятностей
- •Классическая схема
- •Закон больших чисел в форме Чебышева
- •Закон больших чисел для схемы серий
- •Закон больших чисел в форме Хинчина
- •Центральная предельная теорема в форме Леви Теорема Леви
- •Теорема Муавра-Лапласа
- •Центральная предельная теорема в форме Ляпунова
- •Условное математическое ожидание, условная вероятность и условное распределение
- •Определение и основные свойства условного математического ожидания
- •Теорема существования и единственности условного математического ожидания
- •Математическое ожидание одной случайной величины относительно другой
- •Свойства условного математического ожидания
- •Определение условной вероятности, условного распределения и условной плотности Условная вероятность
- •Условное распределение
- •Вычисление условной плотности и условного математического ожидания
Расчет надежности при последовательном соединении элементов
Системой с последовательным соединением элементов назовем такую систему из n элементов, в которой отказ любого из этих элементов приводит к отказу всей системы.
Рассчитаем надежность системы, составленной из 3 последовательно соединенных одинаковых независимых элементов (вероятность отказа каждого - 0,1)
Действуя по аналогии с предыдущим примером, построим пространство элементарных исходов и определим их вероятности. Отказ системы возникает при всех исходах кроме одного
![]()
Таким образом, вероятность безотказной работы этой системы равна
![]()
что значительно меньше чем вероятность безотказной работы одного элемента.
Заметим, что если рассматриваемая система является частью более сложной системы, то можно при расчетах надежности заменить эти три элемента одним, с вероятностью отказа 0,271.
Расчет надежности сложной системы.
Если сложную систему удается представить в виде последовательно-параллельного соединения элементов, то ее надежность можно рассчитать последовательно рассчитывая надежности ее частей и заменяя каждую часть элементов одним элементом.
На рисунке приведене пример такой системы. На элементах указаны вероятности их отказа.
Заменим три последовательно соединенных верхних элемента одним, с вероятностью отказа 0,352 = 1-(1-0,1)*(1-0,2)*(1-0,1), а два параллельных внизу одним с вероятностью отказа 0,09=0,3*0,3. Тогда получим следующую схему
Заменяя сначала последовательно соединенные элементы одним с вероятностью отказа 0,0991=1 - (1-0,09)*(1-0,01), затем получившиеся параллельно соединенные элементы одним с вероятностью 0,0348832 =0,352 * 0,0991 получим
![]()
Таким образом вероятность безоказной работы системы равна 1-0,0348832 =0,9651168.
Замечания к примерам.
1. В предыдущих примерах элементарный исход представлял собой вектор, координаты которого были однородны – принимали значения из одного и того же множества. Нет никаких ограничений при построении вероятностных пространств с использованием понятия независимости для объединения разнородных опытов – например бросания несимметричной монеты и симметричной игральной кости одновременно. В этом случае первая координата имеет два значения (1 – герб) , вторая - шесть и
![]()
Здесь p – вероятность выпадения герба.
2. Замена параллельно или последовательно соединенных элементов одним является частным случаем т.н. отображения вероятностных пространств. Действительно, для расчета вероятностей отказа нам пришлось описать исходную систему с n элементами элементарным исходом с n двоичными координатами ( по числу элементов). При этом число возможных состояний системы равно
![]()
С другой стороны с точки зрения надежности система может находится только в двух состояниях – исправна или неисправна (отказ). Поэтому для описания надежности системы достаточно двух элементарных исходов – 0,1. Еще раз заметим, что один опыт, с разной степенью детальности может быть описан разными пространствами элементарных исходов.
Каждому элементарному исходу (состояниям элементов) в первом пространстве соответствует либо 0 (отказ системы) либо 1 (исправность системы) во втором пространстве.
Таким образом мы имеем два вероятностных пространства, основное
![]()
на котором мы задали вероятность с использованием детальных представлений об опыте и второе (пространство значений)
![]()
,
B – наибольшая сигма-алгебра.
Во втором пространстве мы определили вероятность с помощью отображения (функции )
![]()
которая каждому элементарному исходу первого опыта ставит в соответствие элементарный исход второго опыта.
![]()
Замена сложной системы одним элементом равносильна указанному отображению пространств. Вероятность на втором пространстве не определяется независимо, а вычисляется с использованием вероятности, заданной на основном пространстве и отображения
![]()
Если изменить вероятность на основном пространстве или отображение, то изменится и вероятность на пространстве значений. Например, при изменении надежности отдельных элементов изменится вероятность P, при изменении схемы соединения – отображение.
Для того чтобы отметить зависимость вероятности на пространстве значении от основной вероятности и отображения ее обозначают
![]()
например
![]()
