- •Теория вероятностей Введение в теорию вероятностей Предмет теории вероятностей
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Расчет шансов и прогнозирование последствий
- •Примеры практических задач, при решении которых применяется теория вероятностей
- •Игра по крупному
- •Основные понятия и определения Первичные понятия Опыт (эксперимент)
- •Элементарный исход
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Операции над подмножествами
- •Случайные события
- •Информационный смысл понятия сигма - алгебра
- •Пересечение сигма-алгебр
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Независимые события
- •Теорема (о непрерывности вероятностной меры)
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Факториал
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Сходимость по вариации - приближение одних моделей другими
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Свойства случайных величин
- •Случайный вектор
- •Распределения случайных величин и векторов
- •Точки непрерывности и разрыва функции распределения
- •Несобственные функции распределения
- •Геометрическое распределение
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Теоремы о предельном переходе под знаком интеграла Лебега
- •Теорема Лебега о мажорируемой сходимости
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Неравенство Ляпунова.Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление интеграла Лебега в произведении пространств. Теорема Фубини
- •Теорема Фубини
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Абсолютная непрерывность вероятностных мер
- •Абсолютно непрерывные и сингулярные меры и распределения
- •Теорема Радона-Никодима
- •Суммирование независимых случайных величин
- •Сходимость последовательностей случайных величин и их распределений
- •Сходимость по вероятности
- •Сходимость в среднеквадратическом
- •Слабая сходимость распределений
- •Взаимосвязь различных видов сходимости
- •Закон больших чисел в форме Бернулли
- •Теорема Шеффе
- •Преобразование Лапласа и производящая функция
- •Теорема единственности для характеристических функций и характеристические функции важных распределений
- •Предельные теоремы теории вероятностей
- •Классическая схема
- •Закон больших чисел в форме Чебышева
- •Закон больших чисел для схемы серий
- •Закон больших чисел в форме Хинчина
- •Центральная предельная теорема в форме Леви Теорема Леви
- •Теорема Муавра-Лапласа
- •Центральная предельная теорема в форме Ляпунова
- •Условное математическое ожидание, условная вероятность и условное распределение
- •Определение и основные свойства условного математического ожидания
- •Теорема существования и единственности условного математического ожидания
- •Математическое ожидание одной случайной величины относительно другой
- •Свойства условного математического ожидания
- •Определение условной вероятности, условного распределения и условной плотности Условная вероятность
- •Условное распределение
- •Вычисление условной плотности и условного математического ожидания
Пуассоновское распределение - теорема Пуассона
Пусть
![]()
некоторый параметр.
Распределение на пространстве неотрицательных целых чисел называется пуассоновское распределение (распределение Пуассона), если
![]()
Распределение Пуассона является предельным случаем биномиального распределения при специальном поведении параметров (n,p) биномиального распределения Это будет показано в дальнейшем. Заметим, что биномиальное распределение можно рассматривать как распределение на пространстве неотрицательных целых чисел, положив
![]()
Определим на сигма-алгебре всех подмножеств неотрицательных целых чисел две вероятности P и Pn ,, соответствующие пуассоновскому и биномиальному распределениям :

Теорема Пуассона.
Пусть параметры биномиального распределения изменяются следующим образом
![]()
Тогда
![]()
т.е. биномиальная вероятность равномерно по всем случайным событиям стремится к пуассоновской вероятности.
Доказательство.
Докажем вначале, что в условиях теоремы для любого фиксированного k
![]()
Действительно, сгруппировав множители входящие в pk,n следующим образом
получим

Покажем теперь, что из сходимости
![]()
следует
сходимость

Действительно, определив множество A* следующим образом
![]()
получим

Далее, так как на множестве A*
![]()
для любого N получаем

Выбрав N достаточно большим, можно сделать вторую сумму сколь угодно малой, первую сумму после этого можно сделать также сколь угодно малой выбрав достаточно большое n.
Доказательство завершено.
При больших k рассчитать пуассоновскую вероятность гораздо легче, биномиальную. Пуассоновское распределение используется для приближения биномиального распределения в тех случаях, когда количество испытаний в схеме Бернулли велико, а вероятность успеха мала.
Сходимость по вариации - приближение одних моделей другими
Предположим задано некоторое пространство элементарных исходов и сигма-алгебра событий.
Определив на сигма-алгебре две вероятности P и Q,, получим два вероятностных пространства и соответственно две математические модели описывающие один и тот же эксперимент. Естественно считать эти модели совпадающими, если они дают одинаковые вероятности для всех случайных событий
![]()
![]()
Две модели естественно считать близкими (приближающими друг друга) если этот супремум достаточно мал.
Дадим следующее определение.
Сходимость по вариации.
Последовательность вероятностей (вероятностных мер или их распределений) Pnсходится к вероятности (распределению) P по вариации, если
![]()
В предыдущем пункте мы доказали сходимость по вариации биномиальной вероятности к пуассоновской (в некоторых условиях).
Измеримое пространство.
В предыдущем пункте мы определили две различные вероятности на одной и той же сигма-алгебре событий. В дальнейшем нам придется делать это неодократно. Для удобства дадим следующее определение.
Измеримое пространство – это пара
![]()
Независимость событий и условная вероятность. Построение моделей.
При построении дискретных вероятностных моделей достаточно определить распределение на множестве элементарных исходов. Для того, чтобы определить вероятяность элементарного исхода часто используют понятие независимости и понятие условной вероятности.
Независимость
Различие между независимостью попарно и в совокупности. Пример Бернштейна
Данный пример показывает, что существуют попарно независимые события , которые не являются независимыми в совокупности.
Рассмотрим тетраэдр, грани которого покрашены в три цвета следующим образом:
1 грань – синяя
2 грань – зеленая
3 грань – желтая
4 грань разделена на три сектора – синий, зеленый и желтый.
Опыт состоит в бросании тетраэдра и наблюдении цвета выпавшей (нижней) грани.
Обозначим события
A– на грани есть синий цвет
B– на грани есть зеленый цвет
C– на грани есть желтый цвет
Тогда, используя симетричность тетраэдра и классическую вероятностную модель получим:

Для исключения неоднозначности при интерпретации понятия независимости в теории вероятностей при построении моделей используется, в основном, независимость в совокупности, как более сильная. В дальнейшем говоря о независимости мы, если не указано противное, будем подразумевать независимость в совокупности.
