Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Формовочные материалы. Учебное пособие

.pdf
Скачиваний:
198
Добавлен:
20.05.2014
Размер:
1.35 Mб
Скачать

Натуральная олифа представляет собой льняное или конопляное масло, обработанное при 250°С без доступа воздуха в присутствии сиккативов. Сиккативы (соли жирных, смоляных и нафтеновых кислот) – вещества, хорошо растворимые в растительных маслах и служащие катализаторами для быстрого их высыхания.

Олифа оксоль представляет собой продукт окисления растительных масел (55%) с последующим введением сиккативов и растворением в уайт-спирите (45%). Уайт-спирит – фракция перегонки нефти (особо чистый керосин, возгоняющийся при 140–200оС, имеющий плотность 770 кг/м3).

Связующие 4ГУ (п) и 4ГУ (в) – это раствор сплава (50%) полувысыхающих и высыхающих масел (соответственно, индекс “п” или “в”) с канифолью (3%) или нефтеполимерной смолой в уайт-спирите (47%). Указанные связующие вводятся обычно в смесь в количестве

1,5–2%.

Связующее ОХМ – это обработанное хлопковое масло плотно-

стью 960–970 кг/м3.

В 50–60-е годы был разработан ряд связующих на основе продуктов переработки нефти, сланцев и других веществ, которые почти полностью заменили масла.

П – раствор окисленного петролатума (побочный продукт при изготовлении смазочных масел из нефти) в уайт-спирите в соотношении 1:1. Плотность 820–880 кг/м3.

ПТ – раствор в уайт-спирите окисленного петролатума и таллового масла (до 30%) – побочного продукта при получении целлюлозы.

ПТА – раствор в уайт-спирите окисленного петролатума, обработанного аммиаком, и таллового масла.

ГТФ – продукт термической переработки эстонских сланцев (генераторная тяжелая фракция).

ПС – связующее из 60% П и 40% ГТФ. СЛК – 50% ГТФ и 50% лака-энтиноля.

КО – раствор кубовых остатков (от производства синтетических жирных кислот) в уайт-спирите.

70

УСК – раствор кубовых остатков продуктов переработки нефти (30–35%) в органическом растворителе (40–50%) с адгезионной присадкой (0,1–15%). Для снижения температуры его застывания вводят до 15% асфальтовых смолистых веществ.

Все масляные связующие являются жидкостями, хорошо смешиваются с песком, позволяют достичь высокой прочности формовочной смеси после сушки, негигроскопичны, смесь к оснастке не прилипает, имеет хорошую выбиваемость. Недостатками масляных связующих являются необходимость длительной сушки, малая термостойкость, низкая прочность в сыром состоянии. Масляные связующие применяют для изготовления стержней 1-го и 2-го классов сложности.

5.5. Полисахариды

Полисахариды – высокомолекулярные сложные углеводы. Они являются побочными продуктами производства переработки сахаросодержащих веществ. Упрочнение форм и стержней с такими связующими происходит при тепловой сушке в результате испарения влаги и полимеризации сахаров. При этом из-за диффузии водного раствора связующего и испарения влаги с поверхности формы поверхностные слои ее обогащаются связующим, в результате чего прочность поверхности повышается, а прочность глубинных слоев понижается.

К связующим этого класса (класс Б-2, Б-3) относятся мелясса, пектиновый клей, декстрин, крахмалит, гидрол и др.

Мелясса (патока) – продукт переработки сахарной свеклы или тростника. Связующие свойства меляссы зависят от содержания в ней сахарозы, глюкозы, фруктозы. Обычно в меляссе содержится

45–50% сахаров.

Впроцессе сушки стержней (при нагреве) мелясса разжижается

иобволакивает песчинки. Затем стержни остывают и приобретают необходимою прочность. Однако из-за разжижения меляссы при сушке стержни непрочны, могут дать осадку, поэтому в смесь вводят до 6% глины. Мелясса вводится в смесь в количестве до 2%.

71

Прочность смеси, содержащей 2% меляссы и 6% глины, после сушки при 160–180°С составляет не менее 0,3 МПа (3 кг/cм2).

Пектиновый клей – отходы переработки жома плодов и овощей, обработанные кислотами. Прочность смеси при содержании 2,5% пектинового клея после сушки при 160–180°С составляет не менее 1 МПа

(10 кг/см2).

Декстрин – продукт неполного гидролиза картофельного или кукурузного крахмала (при 120–150°С) разбавленными минеральными кислотами. Крахмал (С6Н10О5)n имеет большую молекулярную массу и не растворим в воде.

При нагреве его молекулы расщепляются, и образующийся декстрин становится растворимым. Декстрин поставляется в виде порошка желтого и палевого цвета. Вводится в смесь в количестве 0,5–1,5%. Прочность смеси при содержании 1,25% декстрина после сушки при температуре 160–180°С не менее 0,5 МПа (5,0 кг/см2).

Крахмалит – связующее, полученное путем специальной обработки крахмала, вводится в смеси в небольшом количестве (0,015– 0,1%) для автоматических линий формовки.

Гидрол – продукт переработки кукурузы на глюкозу. Его свойства подобны свойствам меляссы. ВНИИЛИТМАШем разработано высокопрочное углеводное связующее ЭКР, которое обеспечивает прочностные свойства при формовке по-сырому 0,10–0,28 МПа (1,2–2,8 кг/см2) при влажности менее 3,5%.

Недостатками всех водорастворимых органических связующих являются необходимость тепловой сушки и повышенная гигроскопичность. Поэтому при их длительном хранении снижается прочность стержня. Кроме того, водорастворимые связующие дефицитны. В настоящее время их применение сокращается.

5.6. Лигносульфонаты

Лигносульфонаты (ЛСТ) относятся к органическим водным связующим класса Б-2 и Б-3 (см. табл. 5.1).

72

По объему применения в качестве связующих лигносульфонаты занимают в литейном производстве третье место после глины и жидкого стекла. Они применяются в формовочных смесях для формовки по-сырому, по-сухому, для изготовления стержней в нагретой оснастке, в жидкоподвижных и сыпучих ХТС, противопригарных красках, в качестве катализатора для отверждения ХТС и др.

Лигносульфонаты являются побочными продуктами при производстве целлюлозы из древесины сульфитным способом.

ЛТС являются очень дешевыми и недефицитными органическими связующими, обеспечивающими хорошую выбиваемость форм и стержней. В настоящее время используется менее половины получаемых лигносульфонатов, а большая часть их из-за ограниченного применения выбрасывается в канализацию или сжигается. Масштабы применения ЛТС могут быть значительно расширены. Применение ЛТС в литейном производстве – пример безотходной технологии в промышленности.

Согласно ГОСТ 13 183–83 производятся ЛСТ марки А (жидкие, содержат сухих веществ не менее 47%, плотность – не менее 1230 кг/м3) и марки Т (твердые, более 76% сухих веществ); pH 20%-го раствора ЛСТ – не менее 4,4.

Твердые ЛСТ, хотя и более удобны для транспортирования, особенно в холодное время года (поставляются в виде глыб по 20 кг в бумажных мешках), однако из-за трудностей, возникающих при хранении (слипание), дозировке и растворении, применяются ограниченно.

Для формовки по-сырому и по-сухому и для изготовления стержней в нагретой оснастке наиболее подходящими являются ЛСТ с натриевым основанием, а для ЖСС, отверждаемых CrO3, – ЛСТ с кальциевым основанием.

ЛСТ применяются в формовочных смесях в сочетании с глиной и другими связующими. Формовочные смеси только с одним ЛСТ не применяются, так как имеют низкие прочностные свойства (0,1–0,3 МПа), что обусловлено возникновением напряжений и трещин в пленке этого связующего при сушке вследствие значительного уменьшения объема ЛСТ (в 2,7 раза).

73

Для уменьшения напряжений в пленках в ЛСТ следует вводить пластификаторы (мочевину, глицерин) или инертные добавки (глину, маршалит), уменьшающие усадку и напряжение при высыхании. Прочность при растяжении формовочных смесей, содержащих 3% глины и 5% ЛСТ, после сушки при 160–180°С составляет не менее 0,6 МПа, а при добавке еще 5% маршалита – 0,6–0,8 МПа. Такой прочности часто недостаточно, особенно для стержней, поэтому ЛСТ комбинируют с другими связующими, например, при изготовлении стержней в нагретой оснастке применяют ЛСТ в сочетании с фенолоспиртом, карбамидной смолой и другими веществами.

Недостатком ЛСТ является невысокая термостойкость (380°С), что ограничивает область их применения (используются при мелком и среднем литье). Кроме того, ЛСТ, как и все водорастворимые связующие, имеют повышенную гигроскопичность, что приводит к снижению прочности стержня (формы) при хранении. Однако при вводе гидрофобных добавок (бентон, парафин, жиры) в ЛСТ гигроскопичность их уменьшается.

На основе ЛСТ и гидрофобных продуктов переработки нефти и сланцев (петролатума, битума) созданы комбинированные (эмульсионные) связующие, которые позволяют достичь более высокой прочности, чем каждое из них в отдельности. Кроме того, эти связующие негигроскопичны. Наиболее распространены следующие эмульсионные связующие: СП – состоит из 95% ЛСТ и 5% окисленного петролатума; СБ – содержит 80–85% ЛСТ и 15–20% ГТФ. Прочность при растяжении формовочных смесей с 4–5% этих связующих после сушки при 220–240°С составляет 0,5–0,6 МПа (5,0– 6,0 кг/см2).

5.7. Синтетические смолы

Синтетические смолы относятся к органическим неводным (А-1) и водным (Б-1) связующим. В последнее время в литейном производстве в качестве связующих распространение получают синтетические смолы. Поскольку синтетические смолы являются дорогостоящими, их применяют более экономно, чем другие связующие (в основном для изготовления стержней в горячей и в холодной оснастке и для изготовления оболочковых форм).

74

Рассмотрим синтетические смолы, применяемые для изготовления стержней в холодной оснастке.

ХТС с синтетическими смолами начали применять с 1958 года. Вместо традиционной технологии изготовления стержней, при которой стержни после уплотнения подвергались тепловой сушке, использование ХТС позволило коренным образом изменить технологию изготовления стержней и форм. Сущность технологии заключается в следующем: в смесь вводится жидкая смола (в полимерном состоянии) и отвердитель (кислота), при химическом взаимодействии которых происходит поликонденсация смолы до полного ее затвердевания и, как результат, упрочнения стержня (формы). Применяются также способы упрочнения стержней из ХТС со смолой путем добавки в смесь изоцианатов (отвердителей) и с продувкой ее катализатором (аминами, SO2).

ХТС со смолами имеют бόльшие преимущества, чем смеси с другими связующими: высокая прочность при малом (1–2%) расходе связующего, повышенная точность размеров стержней (и, соответственно, отливок); отпадает необходимость в тепловой сушке, не требуется применение сушильных плит, возможно использование оснастки из любых материалов (металлов, древесины, пластмасс), конструкция стержневых ящиков проще, чем нагреваемых, и т. д. Смеси со смолами имеют высокую текучесть и за счет этого легко уплотняются даже кратковременной вибрацией. Стержни негигроскопичны, изза высокой прочности уменьшается или полностью отпадает необходимость в применении каркасов, имеют хорошую податливаемость и выбиваемость. Применение ХТС позволяет механизировать и автоматизировать изготовление стержней, повышает производительность труда и чистоту поверхности отливок, снижает брак и себестоимость отливок.

Известно, что смолы – это олигомеры, застабилизированные на какой-то промежуточной стадии полимеризации или поликонденсации (в зависимости от способа получения). Полимеризационные смолы получают в результате полимеризации одного или нескольких исходных веществ – манометров – по схеме nA An. В литейном производстве применяют в основном конденсационные смолы. Их получают в результате поликонденсации не менее чем двух веществ

75

n(aAa) + n(bBb) a(AB)n b + (2n – 1)ab,

где a и b – функциональные группы исходных веществ A и B; n – число молекул исходных веществ; a(АВ)n b – смола, образовавшаяся в результате поликонденсации; 2n – 1 – число молекул выделившихся побочных продуктов ab.

Считают, что при получении (синтезе) смол поликонденсация молекул протекает по стадиям: Ф (жидкая смола), В (желатинообразная) и С (твердая). Все смолы, применяемые в качестве связующих, – это полимеры (или, точнее, олигомеры) промежуточной стадии, между А и В, т. е. процесс их поликонденсации прерван при получении смолы. Процесс поликонденсации смолы возобновляют в ХТС путем ввода в нее отвердителя (катализатора).

В табл. 5.3 приведены наиболее широко применяемые смолы для ХТС.

 

Таблица 5.3

Синтетические смолы для ХТС

 

 

Наименование смолы

Марка смолы

 

 

Мочевино-формальдегидные (карбамидные)

КФ-Ж, КФ-МТ (ГОСТ 14231–88)

Мочевино-формальдегидно-фурановые

БС-40, БС-70, БС-80, КФ-40, КФ-90

(карбамидо-фурановые)

Фуритолы: 80, 86, 174

Фенолоформальдегидные (фенольные)

ОФ-1, СФ-3042, СФ-480, СФЖ-30-13,

 

СФЖ-301

Фурило-фенолоформальдегидные

ФФ-1СМ, ФФ-1ФМ, ФФ-1Ф

Мочевино-фенолоформальдегидно-

Фуритолы: 8, 11, 28, 30, 68, 102, 107,

фурановые

107М, 125, 127КСФ-1

 

 

Самыми дешевыми являются мочевино-формальдегидные смолы. Они являются продуктами конденсации мочевины (карбамида) CO(NH2)2 с формальдегидом CH2O, производятся различных марок, отличающихся одна от другой содержанием сухого вещества, степенью конденсации, вязкостью, содержанием свободного формальдегида и др. Недостатком карбамидных смол является низкая термостойкость (220–480°С), вследствие чего стержни и формы имеют большую газотворность, а при разложении они выделяют азот, что

76

может стать причиной газовой пористости в отливках. Эти смолы применяются в основном для получения отливок из цветных металлов и тонкостенного чугунного литья. Содержание азота в смеси для получения чугунных и стальных отливок не должно превышать 0,2%, а для получения отливок из высоколегированных чугунов и сталей – 0,01%. Поэтому для стального литья можно применять мочевино- формальдегидно-фурановые смолы, содержащие не более 1,5% азота. Кроме того, смеси с мочевино-формальдегидными смолами имеют повышенную гигроскопичность.

С целью повышения термостойкости мочевино-формальдегидных смол при их синтезе вводят фуриловый спирт С5H6O2. Такие смолы называют карбамидо-фурановыми. Чем больше введено в смолу фурилового спирта, тем выше их термостойкость. Установлено, что для чугунного литья необходимо содержание в смоле не менее 30%, а для стального – не менее 60% фурилового спирта. Из фуриловых смол наибольшее распространение получили мочевиноформальдегидные смолы, содержащие 40–90% фурилового спирта.

Термин “фурановая смола” относится к фенолоформальдегидным смолам, модифицированным фуриловым спиртом.

Повышенную термостойкость (400–800°С) имеют и фенолоформальдегидные смолы, являющиеся продуктами поликонденсации фенола С6Н5ОН и формальдегида в присутствии различных катализаторов и добавок. Поэтому эти смолы пригодны для стального и чугунного литья. Высокую термостойкость имеют также фурилофенолоформальдегидные смолы – продукты поликонденсации фурилового спирта с фенолоспиртами, стабилизированные фуриловым спиртом (ФФ-1Ф, ФФ-1ФМ) или гидролизным этиловым спиртом (ФФ-1СМ). Эти смолы применяют для ответственного стального литья. Фурило-фенолоформальдегидные смолы – самые дорогостоящие.

Весьма перспективны водорастворимые фенолоформальдегидные смолы СФЖ-30-13 и водоэмульсионная смола СФЖ-301, позволяющие вводить в смесь до 3% глины или применять глинистые пески. Глина при этом адсорбирует низкомолекулярные фракции связующего, в результате чего повышается прочность XТC. Применяются и другие виды смол для ХТС: алкидные, эпоксидные, полиэфирные.

77

Алкидные, или глифталевые, смолы получают при поликонденсации глицерина и фталевого ангидрида. Их отверждают полиизоцианатом и амином. При этом образуются полиуретаны, имеющие высокую прочность. Известны также алкидные смолы, модифицированные растительным маслом.

Полиэфирные смолы имеют в молекулах несколько групп ОН. В качестве отвердителя этих смол в ХТС вводятся изоцианаты. Смолы отверждают также продувкой аминами. Через 5 мин прочность достигает 0,2 МПа при содержании 0,7% смолы. В результате исследований было показано, что при содержании 0,7% смолы “Систол” и 0,9% изоцианата добавками 0,03–0,07% уротропина и 0,3% воды можно достичь прочности при сжатии 2,5–3,5 МПа.

Известны ХТС с поливиниловым спиртом ( ГОСТ 10779–78), который вводится в смесь в виде 7,5–10%-го водного раствора в количестве 4–5% (по отношению к песку). Отверждение происходит при добавке 0,06–0,18% дикарбоновых кислот, например, лимонной. При этом достигается прочность 1,9–2 МПа. Однако ХТС с поливиниловым спиртом (ПВС) имеют повышенную гигроскопичность, и для ее снижения необходимо в смесь добавлять 0,1–0,5% (от сухого ПВС) силана.

Смолы холодного отверждения при хранении самопроизвольно полимеризуются. Чем выше степень их полимеризации сверх оптимальной, тем ниже прочность ХТС с такими смолами. Поэтому срок хранения смол ограничивается (2–6 мес.). Кроме того, для минимального расхода смолы необходимо применять песок высокого качества с минимальным содержанием глины и других примесей, которые поглощают часть смолы и снижают адгезию связующего к песчинкам.

В последние годы применяется способ отверждения ХТС со смолами продувкой сухим холодным или горячим воздухом.

Все смолы, применяемые для ХТС, пригодны для изготовления стержней в нагретой оснастке. Для изготовления стержней в нагретой оснастке применяются и другие смолы (табл. 5.4).

Таблица 5.4

Смолы, применяемые для изготовления стержней в горячих ящиках

78

Наименование смолы

Марка смолы1

Фенолоформальдегидные

ВР-1, ВРБ, фенолоспирт, ПК-104,

 

СФЖ-30-13, СФ-480, СФЖ-305,

 

СФП-011Л, ТОЛ-2

Мочевино-формальдегидно-фурановые

КФ-90, КФ-40, фуритол-80, 86, 174

Мочевино-формальдегидные

КФ-Ж

Мочевино-фенолоформальдегидно-

Фуритолы:30, 68, 107, 107М, 125, 127

фурановые

 

Феноло-мочевино-формальдегидные

ФПР-24, ФМЛ, СФ-411, ФМ, ФКС

Фурило-фенолоформальдегидные

ФФ-1С

Поливиниловый спирт

ПВС 7/1, 7/18, 16/1, 20/1

 

 

Примечание. 1 Температура отверждения стержней со смолами 220–280°С.

Для изготовления оболочковых форм по нагретым моделям (250–350°С) выпускается специальное связующее ПК-104, представляющее собой тонкоизмельченную смесь новолачно-формальде- гидной смолы марки 104 и 8% уротропина – гексаметилентетрамина (СН2)6N4. При конденсации фенола и формальдегида в щелочной среде (pH>7) образуются резольные смолы, а при избытке фенола в кислой среде (pH<7) образуются новолачные смолы. Для ускорения процесса отверждения новолачных смол в них добавляют технический уротропин, в результате чего новолачные смолы приобретают свойства резольной смолы – быстро твердеют после расплавления, превращаясь в результате поликонденсации в более высокомолекулярные неплавкие и нерастворимые соединения. Такие смолы, которые при нагреве размягчаются, а при охлаждении вновь затвердевают, называют термореактивными (в отличие от термопластичных смол). Уротропин при нагреве (при отверждении) разлагается на формальдегид, аммиак и другие газообразные продукты. Выделяющийся формальдегид “сшивает” цепи молекул новолака, образуя трехмерную сетчатую структуру, и придает смоле и оболочке необходимую прочность.

79