
- •Часть 2
- •Лекция № 1. Неопределенный интеграл.
- •Вопрос 1.1. Первообразная и неопределенный интеграл.
- •Вопрос 1.2. Таблица интегралов.
- •Лекция № 2. Неопределенный интеграл.
- •Вопрос 2.1. Замена переменных в неопределенном интеграле.
- •Вопрос 2.2. Метод интегрирования по частям.
- •Лекция №3 неопределенный интеграл.
- •Вопрос 3.1. Рациональные дроби.
- •Вопрос 3.2. Разложение многочлена на множители.
- •Вопрос 3.3. Разложение правильной рациональной дроби на простейшие дроби.
- •Вопрос 3.4. Интегрирование простейших дробей.
- •Вопрос 3.5. Примеры интегрирования рациональных дробей.
- •Лекция № 4 неопределенный интеграл.
- •Вопрос 4.1. Интегрирование дробно-линейных иррациональностей.
- •Вопрос 4.2. Интегрирование квадратичных иррациональностей.
- •Лекция № 5 неопределенный интеграл.
- •Вопрос 5.1. Интегрирование тригонометрических выражений.
- •Лекция № 6 определенный интеграл.
- •Вопрос 6.1. Интегральная сумма и определенный интеграл Римана.
- •Вопрос 6.2. Необходимые и достаточные условия интегрируемости.
- •Вопрос 6.3. Свойства определенного интеграла.
- •Лекция № 7. Определенный интеграл.
- •Вопрос 7.1. Аддитивность определенного интеграла .
- •Вопрос 7.2. Основная формула интегрального исчисления (формула Ньютона - Лейбница).
- •Вопрос 7.3. Замена переменных в определенном интеграле.
- •Вопрос 7.4. Интегрирование по частям в определенном интеграле.
- •Вопрос 7.5. Формула Тейлора с остаточным членом в интегральной форме.
- •Лекция № 8. Определенный интеграл
- •Вопрос 8.1. Формула трапеций.
- •Вопрос 8.2. Формула прямоугольников.
- •Вопрос 8.3. Формула Симпсона.
- •Лекция № 9. Определенный интеграл.
- •Вопрос 9.1. Вычисление площадей плоских фигур.
- •Вопрос 9.2. Вычисление площади криволинейного сектора.
- •Вопрос 9.3. Вычисление объема тел.
- •Вопрос 9.4. Площадь поверхности тела вращения.
- •Лекция № 10 длина плоской кривой.
- •Вопрос 10.1. Длина плоской кривой.
- •Вопрос 10.2. Кривизна и радиус кривизны плоской кривой.
- •Лекция № 11. Несобственные интегралы
- •Вопрос 11.1. Несобственные интегралы от неограниченных функций.
- •Вопрос 11.2. Несобственные интегралы от функции, имеющие несколько особенностей.
- •Вопрос 11.3. Главное значение несобственного интеграла.
- •Вопрос 12.1. Функции нескольких переменных. Основные понятия и определения.
- •Вопрос 12.2. Предел последовательности точек в n-ом пространстве.
- •Лекция № 13. Функции нескольких переменных.
- •Вопрос 13.1. Предел функции нескольких переменных.
- •Вопрос 13.2. Непрерывность функции нескольких переменных.
- •Вопрос 13.3. Частные производные функции нескольких переменных.
- •Лекция № 14. Функции нескольких переменных.
- •Вопрос 14.1. Дифференциал функции нескольких переменных.
- •Вопрос 14.2. Дифференцирование сложной функции. Инвариантность формы первого дифференциала.
- •Лекция № 15. Функции нескольких переменных.
- •Вопрос 15.1. Градиент и производная по направлению функции нескольких переменных.
- •Лекция № 16. Функции нескольких переменных.
- •Вопрос 16.1. Частные производные и дифференциалы старших порядков.
- •Вопрос 16.2. Формула Тейлора для функции нескольких переменных.
- •Лекция № 17. Функции нескольких переменных.
- •Вопрос 17.1. Локальный экстремум функции нескольких переменных.
- •Вопрос 17.2. Необходимое и достаточное условие существования локального экстремума функции нескольких переменных.
- •Лекция № 18. Функции нескольких переменных.
- •Вопрос 18.1. Неявные функции.
- •Вопрос 18.2. Дифференцирование неявной функции.
- •Лекция № 19. Функции нескольких переменных.
- •Вопрос 19.1. Условный экстремум.
- •Вопрос 19.2. Функция Лагранжа и множители Лагранжа.
- •Лекция № 20. Дифференциальные уравнения.
- •Вопрос 20.1. Задачи, приводящие к дифференциальным уравнениям.
- •Вопрос 20.2. Основные определения и понятия теории дифференциальных уравнений.
- •Лекция № 21. Дифференциальные уравнения
- •Вопрос 21.1. Дифференциальное уравнение с разделяющимися переменными.
- •Вопрос 21.2. Однородные дифференциальные уравнения первого порядка.
- •Лекция № 22. Дифференциальные уравнения.
- •Вопрос 22.1. Линейные дифференциальные уравнения первого порядка.
- •Вопрос 22.2. Уравнение Бернулли.
- •Вопрос 22.3. Уравнения в полных дифференциалах.
- •Лекция № 23. Дифференциальные уравнения.
- •Вопрос 23.1. Уравнения вида .
- •Вопрос 23.2. Уравнения вида .
- •Вопрос 23.3. Уравнение вида .
- •Вопрос 23.4. Уравнения вида .
- •Вопрос 23.5. Уравнения вида , где - однородная функция k-го порядка относительно .
- •Лекция № 24. Дифференциальные уравнения.
- •Вопрос 24.1. Метод Пикара (метод последовательных приближений).
- •Вопрос 24.2. Разностные методы дифференциальных уравнений. Метод Эйлера.
- •Лекция № 25. Дифференциальные уравнения.
- •Вопрос 25.1. Метод Рунге-Кутта.
- •Вопрос 25.2. Устойчивость, сходимость разностного метода. Влияние ошибок округления.
- •Лекция № 26. Дифференциальные уравнения.
- •Вопрос 26.1. Линейные дифференциальные уравнения. Основные определения и классификация.
- •Вопрос 26.2. Задача коши для линейного дифференциального уравнения. Теорема существования и единственности.
- •Вопрос 26.3. Общие свойства линейных уравнений.
- •Вопрос 26.4. Линейно независимые и линейно зависимые системы функций. Определитель Вронского.
- •Вопрос 26.5. Уравнение Лиувилля. Формула Лиувилля.
- •Лекция № 27. Дифференциальные уравнения.
- •Вопрос 27.1. Следствия из формулы Лиувилля.
- •Вопрос 27.2. Фундаментальная система решений (фср).
- •Лекция № 28. Дифференциальные уравнения
- •Вопрос 1. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Фундаментальная система решений.
- •Вопрос 28.2. Метод вариации постоянных коэффициентов.
- •Лекция № 29. Дифференциальные уравнения.
- •Вопрос 29.1. Линейные дифференциальные уравнения с постоянными коэффициентами и со специальной правой частью.
- •Лекция № 30. Дифференциальные уравнения.
- •Вопрос 30.1. Линейные дифференциальные уравнения старших порядков.
- •Вопрос 30.2. Системы линейных дифференциальных уравнений первого порядка.
- •Список литературы
Вопрос 18.2. Дифференцирование неявной функции.
Очень часто необходимо искать производную неявной функции, причем в явном виде такую функцию представить удается редко. Оказывается, что можно найти выражение для производной неявной функции даже не зная ее явного вида.
Теорема
18.3. Пусть
выполнены условия теоремы 18.1 и функция
непрерывна и дифференцируема на
прямоугольнике
.
Причем
,
тогда уравнение
определяет единственную неявную
дифференцируемую функцию
с производной
.
Доказательство.
Пусть для определенности
,
тогда для любого фиксированного x
функция
монотонно возрастает по y.
Из теоремы 18.2 следует, что в этом случае
существует единственная неявная функция
определяемая уравнением
.
Обозначим ее через
.
Докажем ее дифференцируемость. Рассмотрим
разность
Здесь
c
и d
лежат между значениями
и
.
Отсюда получаем
.
Поделив
на разнрсть
,
перейдем к пределу при
.
Что и требовалось доказать.
Конец доказательства.
Пример
18.4. Как
следует из примера 18.3
и это дифференцируемая функция, поэтому
неявная функция тоже дифференцируема
и
,
для
тех x
и y,
для которых
.
Конец примера.
Теорема
18.4. Пусть
функция
непрерывна и дифференцируема в
окрестности точки
и
.
Если в этой окрестности частная
производная
и непрерывна, то существует некоторый
интервал, содержащий точку
,
на котором определена единственная
дифференцируемая неявная функция
,
такая, что
и
.
Доказательство.
Пусть для определенности
.
Тогда на некотором прямоугольнике
,
содержащем точку
,
выполняется неравенство
в силу непрерывности производной.
Следовательно, по y
функция
монотонно возрастает при фиксированном
значении
.
Отсюда следует, что на отрезке
функция
принимает на концах этого отрезка
разные знаки
.
И, следовательно, в силу непрерывности
функции
на некотором отрезке
эта функция принимает значения разных
знаков
.
Теперь выполнены все условия теоремы
18.3, откуда следует справедливость
теоремы 18.4.
Конец доказательства.
Пример
18.5. Пусть
,
в точке
частная производная
,
поэтому существует интервал, содержащий
указанную точку, на котором определена
единственная неявная функция
.
Конец примера.
Лекция № 19. Функции нескольких переменных.
Вопрос 19.1. Условный экстремум.
Определение 19.1. Условным минимумом функции n переменных при наличии m условий связи
,
называется точка , такая что
,
и для всех из некоторой окрестности точки , удовлетворяющих уравнениям связи, выполняется неравенство .
Конец определения.
Определение 19.2. Условным максимумом функции n переменных при наличии m условий связи
называется точка , такая что
,
и
для всех
из некоторой окрестности точки
,
удовлетворяющих уравнениям связи,
выполняется неравенство
.
Конец определения.
Определение 19.3. Условным экстремумом функции n переменных называется точка условного максимума или локального минимума.
Пример
19.1.
.
Точкой
условного минимума будет
(смотри рис. 1). Действительно из уравнения
связи
,
или
,
но
.
Конец примера.