
- •Глава I. Электрические заряды
- •§ 2. Проводники и диэлектрики. Мы видели в предыдущих опытах, что, прикасаясь заряженным телом к незаряженным предметам, мы сообщаем им электрический заряд. Мы
- •§ 5. Что происходит при электризации? До сих пор мы не
- •Глава II. Электрическое поле
- •§ 12. Действие электрического заряда на окружающие тела.
- •§ 14. Напряженность электрического поля. Рисунки § 13 дают лишь общую качественную картину электрического поля. Для количественной характеристики электрического
- •§ 15. Сложение полей. Если электрическое поле создано одним точечным зарядом q, то напряженность этого поля в какой-либо точке, отстоящей на расстоянии г от заряда, равна, согласно закону Кулона,
- •§ 16. Электрическое поле в диэлектриках и в проводниках.
- •§ 18. Основные особенности электрических карт. При построении электрических карт нужно иметь в виду следующее.
- •§ 20. Работа при перемещении заряда в электрическом поле.
- •§ 21. Разность потенциалов (электрическое напряжение).
- •§ 22. Эквипотенциальные поверхности. Подобно тому как мы графически изображаем линиями напряженность электрического поля, можно изобразить и разность потенциалов (напряжение).
- •§ 23. В чем смысл введения разности потенциалов? в § 21
- •§ 26. В чем различие между электрометром и электроскопом?
- •§ 31. Распределение зарядов в проводнике. Клетка Фарадея.
- •§ 33. Конденсаторы. Возьмем две изолированные металлические пластины 1 и 2 (рис. 58), расположенные на некото
- •Конденсатор емкости 0,001 мкФ заряжен до разности потен-
- •§ 38. Энергия заряженных тел. Энергия электрического поля.
- •§ 47. Сопротивление проводов. В предыдущем параграфе было указано, что электрическое сопротивление для разных проводников различно и может зависеть как от материала,
- •§ 48. Зависимость сопротивления от температуры. Опыт в соответствии с общими соображениями § 46 показывает, что сопротивление проводника зависит также и от его температуры.
- •§ 53. Вольтметр. При помощи гальванометра можно , измерить не только силу тока, но и напряжение, ибо", согласно
- •§ 61. Понятие о расчете нагревательных приборов. Для нормальной работы любого электронагревательного прибора его обмотка должна быть правильно рассчитана.
- •§ 64. Электрическая проводка. На рис. 102 показано устройство комнатной электрической проводки. Ток со станции
- •Глава V. Прохождение электрического тока через электролиты
- •§ 68. Движение ионов в электролитах. Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.
- •§ 72. Градуировка амперметров при помощи электролиза.
- •§ 73. Технические применения электролиза. Явление электролиза находит себе многочисленные технические применения.
- •Какова мощность тока, при помощи которого можно полу.
- •Глава VI. Химические и тепловые генераторы тока
- •§ 76. Как возникают э. Д. С. И ток в гальваническом элементе? Легко заметить, что один из электродов гальванического
- •§ 82. Соединение источников тока. Очень часто источники тока соединяют между собой для совместного питания цепи.
- •§ 85. Измерение температуры с помощью термоэлементов.
- •Глава VII. Прохождение электрического тока через металлы
- •Глава Vlil. Прохождение электрического тока через газы
- •§ 94. Молния. Красивое и небезопасное явление природы — молния — представляет собой искровой разряд в атмосфере.
- •§ 95. Коронный разряд. Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа — коронный разряд.
- •§ 103. Природа катодных лучей. Ответ на вопрос о природе катодных лучей дают опыты по исследованию их свойств. Важнейшие результаты этих опытов следующие.
- •Катодные лучи вылетают в направлении, перпендикулярном к поверхности катода, и распространяются
- •§ 106. Электронные лампы. Явление термоэлектронной эмиссии и обусловленный им электронный ток через вакуум лежат в основе устройства очень большого числа
- •§ 108. Природа электрического тока в полупроводниках.
- •Глава X. Основные магнитные явления
- •§ 112. Естественные и искусственные магниты. Прежде чем углублять наши знания о магнитных явлениях, напомним некоторые известные факты.
- •§ 114. Магнитное действие электрического тока. Простейшие электрические и магнитные явления известны людям с очень давних времен.
- •§ 115. Магнитные действия токов и постоянных магнитов.
- •Глава XI. Магнитное поле
- •§ 119. Магнитный момент. Единица магнитной индукции.
- •§ 126. Магнитное поле внутри соленоида. Напряженность магнитного поля. Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр.
- •Глава XIII. Магнитное поле земли
- •§ 129. Элементы земного магнетизма. Так как магнитные и географические полюсы Земли не совпадают, то магнитная стрелка указывает направление север — юг только прибли-
- •Глава XIV. Силы, действующие в магнитном поле на проводники с током
- •§ 138. Условия возникновения индукционного тока. Напомним некоторые простейшие опыты, в которых наблюдается возникновение электрического тока в результате электромагнитной индукции.
- •Глава XVI. Магнитные свойства тел
- •§ 144. Магнитная проницаемость железа. До сих пор мы
- •Глава XVII. Переменный ток
- •§ 151. Постоянная и переменная электродвижущая сила.
- •§ 154. Сила переменного тока. Мы видели, что мгновенное значение переменного тока все время изменяется, колеблясь между нулем и максимальным значением. Тем не
- •§ 159. Закон Ома для переменного тока. Емкостное и индуктивное сопротивления. В § 46 мы установили основной закон постоянного тока — закон Ома I—u/r.
- •§ 162. Сдвиг фаз между током и напряжением. Проделаем -следующий опыт. Возьмем описанный в § 153 осциллограф
- •§ 166. Выпрямление переменного тока. Хотя, как мы уже
- •Глава XVIII. Электрические машины: генераторы, двигатели, электромагниты
- •Необходимо всегда подбирать двигатель такой мощности, какую фактически требует приводимая им в действие машина.
- •§ 175. Обратимость электрических генераторов постоянного тока. В § 172
- •§ 177. Применение электромагнитов. Большинство технических применений магнитов основывается на их способности притягивать и удерживать железные предметы. И в
- •273 , 301, 310, 344 , 347 , 354 Ампер-секунда 31 Ампер-час 176
- •253 Полюс 164
- •58 , 60 , 62 , 94 , 98 Разряд дуговой 218, 219, 408
- •§ 139. Направление индукционного тока. Правило Ленца.
Глава XI. Магнитное поле
§118. Магнитное поле и его проявления. Магнитная индукция. Пространство вблизи магнита или проводника с током находится в особом состоянии, которое мы обозначили названием «магнитное поле» (§ 114). Название выражает мысль, что в этом пространстве проявляются механические силы, действующие на другие магниты или проводники с током. Однако эти действия не являются единственным проявлением магнитного поля. Можно указать еще большое число других физических явлений, в которых сказывается влияние поля. Так, например, под действием магнитного поля изменяется электрическое сопротивление различных металлов; некоторые тела, помещенные в магнитное поле, изменяют свои размеры, и т. д.
Наиболее сильное влияние оказывает магнитное поле на электрическое сопротивление висмута, что позволило изготовить висмутовый «измеритель поля». Изменение размеров под действием магнитного поля больше всего проявляется у тел, которые сделаны из сильно намагни- _ чивающихся веществ (железо, никель, кобальт); это явление, именуемое магнитострикцией, получило важные технические применения: с его помощью возбуждают очень быстрые колебания железных стерженьков, служащих источником очень коротких звуковых волн (ультразвук).
Когда действие магнитного поля в разных его точках проявляется в различной степени, мы говорим, что поле в этих точках различно. Для установления количественной меры магнитного поля мы могли бы использовать любое его проявление. Практически оказывается наиболее удобным характеризовать поле теми механическими силами, с которыми оно действует на магниты и проводники с током.
В § 115 было выяснено,,что магнитное поле оказывает на магнитную стрелку или виток с током ориентирующее действие, стремясь установить стрелку или нормаль (т. е. перпендикуляр), к плоскости витка в определенном направлении. Это направление принимается за направление
магнитного поля. У магнитного поля Земли этим направлением является направление с севера на юг.
Рис.
210. Момент пары сил M=Ft\
00'
—
ось, вокруг которой пара сил вызывает
вращение
М = Л= 1 Н.м.
Опыт показывает, что вращающий момент М пропорционален синусу угла а между направлением поля и направлением магнитной стрелки (или нормали к витку). Следовательно, вращающий момент М максимален, когда а=я/2, и обращается в нуль, если а=0 или я.
Подобно тому как электрическое поле характеризуется с помощью векторной величины Е, которая называется напряженностью поля (§ 14), для характеристики магнитного поля вводят векторную величину В, которую по историческим причинам назвали магнитной индукцией поля (правильнее было бы по аналогии с Е назвать эту величину напряженностью магнитного поля).
За направление^вектора В принимается направление, в котором устанавливается магнитная стрелка или нормаль к витку с током. Модуль магнитной индукции определяется по максимальному вращающему моменту Мтах (наблюдающемуся при а=п/2; см." выше), действующему на стрелку или виток. В случае, когда магнитная индукция В во всех'точках одинакова по модулю и направлению, поле называется однородным (ср. § 17).
Если в однородное магнитное поле помещать изготов- . ленные из очень тонкой проволоки различные по размерам и форме замкнутые проводники (плоские контуры) с током и измерять действующий на них максимальный вращающий момент Л4тах, то обнаруживается, что этот момент: а) пропорционален силе тока / в контуре; б) пропорционален площади контура 5; в) для контуров с одинаковой площадью 5 не зависит от формы контура (т. е. одинаков для круговых, квадратных, треугольных и вообще контуров любой неправильной формы). Таким образом, максимальный вращающий момент оказывается
пропорциональный, величине
(118.1)
которая называется магнитным моментом контура с током.
Указанные зависимости позволяют взять в качестве характеристики модуля вектора В значение вращающего момента Мтах, действующего на контур с магнитным моментом рт, - равным единице. Следовательно, можно написать, что
B = ^s!axj (118.2)
Рт
где Мтах — максимальный вращающий момент, действующий в данном поле на контур с магнитным моментом рт. Если поле неоднородно, то для определения числового значения В в некоторой точке нужно поместит^ в нее контур размеров, малых по сравнению с расстояниями, на которых поле заметно меняется, и определить действующий на него вращающий момент Л|тах.