Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора по ал.гем..docx
Скачиваний:
10
Добавлен:
24.04.2019
Размер:
573.01 Кб
Скачать
  1. Угол между прямыми на плоскости. Условие параллельности и перпендикулярности.

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами   и  . Так как  , то по формуле для косинуса угла между векторами получим

Условия параллельности и перпендикулярности двух прямых равносильны условиям параллельности и перпендикулярности их направляющих векторов S1 и  :

Две прямые параллельны тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, т.е. l1 параллельна l2 тогда и только тогда, когда s1 параллелен  .

Две прямые перпендикулярны тогда и только тогда, когда сумма произведений соответствующих коэффициентов равна нулю:  .

  1. Уравнение прямой с угловым коэффициентом; уравнение прямой через одну и две точки Уравнение прямой с угловым коэффициентом

Уравнение прямой с угловым коэффициентом. Прямая линия, пересекающая ось Oy в точке   и образующая угол   с положительным направлением оси Ox: Коэффициент k называется угловым коэффициентом прямой. В этом виде невозможно представить прямую, параллельную оси Oy.

Уравнение прямой, проходящей через две заданные несовпадающие точки

Уравнение прямой, проходящей через две заданные несовпадающие точки   и 

или

или в общем виде

Неполные уравнения прямой. Совместное исследование уравнение двух и трех прямых. Уравнение прямой "в отрезках"

Если в общем уравнении прямой  (1)

один или два из трех коэффициентов (считая и свободный член) обращаются в нуль, то уравнение называется неполным. Возможны следующие случаи:

1). С=0; уравнение имеет вид   и определяет прямую, проходящую через начало координат.

2). В=0 (А 0); уравнение имеет вид   и определяет прямую, перпендикулярную к оси Ох. Это уравнение может быть записано в виде х=а, где   является величиной отрезка, который отсекает прямая на оси Ох, считая от начала координат.

3). В=0, С=0 (А 0); уравнение может быть записано в виде х=0 и определяет ось ординат.

4). А=0 (В 0); уравнение имеет вид   и определяет прямую, перпендикулярную к оси Оу. Это уравнение может быть записано в виде y=b, где   является величиной отрезка, который отсекает прямая на оси Оу, считая от начала координат.

5). А=0, С=0 (В 0); уравнение может быть записано в виде у=0 и определяет ось абсцисс.

Если ни один из коэффициентов уравнения (1) не равен нулю, то его можно преобразовать к виду , (2)

где  ,   суть величины отрезков, которые отсекает прямая на координатных осях.

Уравнение (2) называется уравнением прямой «в отрезках».

Если две прямые даны уравнениями

 и  ,

то могут представиться три случая:

а).   - прямые имеют одну общую точку;

б).   - прямые параллельны;

в).   - прямые сливаются, то есть оба уравнения определяют одну и ту же прямую.

17 Проекция вектора на ось свойства проекции

Пусть на плоскости или в пространстве заданы ось l с единичным вектором е и произвольный вектор а.

Ортогональной проекцией (или просто проекцией) вектора а на ось l называется число, равное произведению длины вектора а на косинус угла между векторами е и а.

Проекция вектора а на ось l обозначается символом  прl а   или   пре а.

Таким образом, по определению

прl а = | a | cos  .

Отложим вектор а от точки О оси l.

Если угол между векторами е и а острый (рис. 50, а), то проекция вектора а на осьl равна длине отрезка ОА1  и где   А1  — проекция точки А на прямую l.

Действительно,

Если угол между векторами е и а тупой (рис. 50,б), то проекция вектора а на осьl равна длине отрезка ОА1 и взятой со знаком минус.

В самом деле,

Если вектор а перпендикулярен оси l, то   = 90° и прl а =  | a | cos 90° = 0.

Рассмотрим два важных свойства проекции вектора на ось.

Свойство 1. Для любых векторов а и b справедливо равенство

прl (а + b) = прl а + прl b, где l — произвольная ось.

Это свойство позволяет заменять проекцию суммы векторов суммой их проекций и наоборот.

Свойство 2. Для любого вектора а и любого числа k справедливо равенство

прka = k прa,

где — произвольная ось.

Это свойство позволяет выносить и вносить числовой множитель за знак проекции.

Справедливость этих свойств следует из правил действий над векторами, заданными своими координатами.

В самом деле, пусть l — произвольная ось с началом отсчета О и единичным вектором е. Введем прямоугольную систему координат следующим образом (рис. 51).

Примем точку О за начало координат, а вектор е — за первый базисный вектор (i = e). В качестве других базисных векторов j и k возьмем любые два единичных перпендикулярных друг другу вектора, лежащих в плоскости перпендикулярной оси l.

Пусть вектор а =  OA> имеет координаты х, у, z. Тогда, по определению проекции,

прl а = | a | cos  .

Но | a | cos   = x, т. е. проекция любого вектора на ось l равна абсциссе этого вектора в выбранном нами базисе.

Так как абсцисса суммы векторов равна сумме абсцисс слагаемых векторов (§ 11),   то,   следовательно, и проекция суммы векторов на ось l равна сумме проекций этих векторов на ось l.

Точно так же и проекция произведения вектора на число равна произведению этого числа на проекцию вектора, так как при умножении вектора на число его абсцисса умножается на это число.