Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора по ал.гем..docx
Скачиваний:
10
Добавлен:
24.04.2019
Размер:
573.01 Кб
Скачать

30 Скалярное произведение двух векторов. Выражение через координаты сомножителей.

Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное произведение векторов  ,   обозначается символом   (порядок записи сомножителей безразличен, то есть  ).

Если угол между векторами  ,   обозначить через  , то их скалярное произведение можно выразить формулой

 (1)

Скалярное произведение векторов  ,   можно выразить также формулой

, или  .

Из формулы (1) следует, что  , если   - острый угол,  , если   - тупой угол;   в том и только в том случае, когда векторы   и   перпендикулярны (в частности,  , если   или  ).

Скалярное произведение   называется скалярным квадратом вектора и обозначается символом  . Из формулы (1) следует, что скалярный квадрат вектора равен квадрату его модуля:

.

Если векторы   и   заданы своими координатами:

,  ,

то их скалярное произведение может быть вычислено по формуле

.

32 Определение угла между векторами. Условие параллельности и перпендикулярности векторов.

Угол между векторами. Угол между вектором и осью.

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один извекторов вокруг своего начала до положения сонаправленности с другим вектором.

                    

                                            рис.1.

Обозначение.  . Из определения следует, что  .

   Мы полагаем очевидным, что при параллельном переносе любого издвух векторов угол между ними остается неизменным, только в этом случае поворот одного из векторов осуществляется либо в общей для обоих векторов плоскости, либо в плоскости параллельной другому вектору.

   Введем понятие угла между вектором и осью.

Определение. Углом между вектором и осью называется угол между данным вектором и любым правоориентированным вектором этой оси.

                                      рис.2.

Обозначение.  .