Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PRZ_-_shpory.docx
Скачиваний:
56
Добавлен:
16.04.2019
Размер:
8.61 Mб
Скачать

2. Способ замены.

Этот способ следует применять в том случае, когда после преобразований получаем некое алгебраическое уравнения относительно тригонометрической функции.

Уравнение вида a(sin x + cos x) + b sin 2x = c решаем, используя замену sin x + cos x = t. Тогда 1 + sin 2x = t2, а уравнение после замены приобретает вид at + b(t2 - 1) = c.

3. Разложение на множители.

Некоторые уравнения можно преобразовать так, что слева будет произведение, а справа - ноль. После чего необходимо каждый множитель приравнять к нулю и найти всевозможные корни уравнения. (Метод преобразования суммы тригонометрических функций в произведение. После применения формул преобразования суммы в произведение уравнение иногда удается либо разложить на множители, либо существенно упростить. Метод преобразования произведения тригонометрических функций в сумму заключается в применении формул преобразования произведения тригонометрических функций в сумм. После их применения уравнение либо удается либо разложить на множители, либо существенно упростить.)

4. Однородные тригонометрические уравнения вида

a0(cos x)n + a1(cos x)n - 1sin x + ... + an - 1cos x(sin x)n - 1 + an(sin x)n = 0, n ∈ N, a0 ≠ 0.

Для его решения необходимо поделить уравнение на (sin x)n ≠ 0 (т.к. sin x, cos x одновременно не равны 0). После чего вводим замену ctg x = z и получаем алгебраическое уравнение

a0zn + a1zn - 1 + ... + an - 1z + an = 0, n ∈ N, a0 ≠ 0.

5. Универсальная замена.

При решении некоторых уравнений (например, asinx + bcosx = c, a, b, c ∈ R) имеет смысл использовать замену tg x/2 = z. После чего sin x = 2z/(1 + z2), cos x = (1 - z2)/(1 + z2), tg x = 2z/(1 - z2). Так как tg x/2 не определен при x = π + 2πn, n ∈ Z, то эта подстановка может привести к потери корней. Потому необходимо проверять, не являются ли числа вида x = π + 2πn, n ∈ Z корнями исходного уравнения.

(Метод подстановки , которая часто используется при решении уравнений, содержащих и . При этом другие тригонометрические функции выражаются через по формулам

, , где .

В результате исходное уравнение может быть сведено к рациональному относительно переменной .)

6.Метод понижения степени состоит в использовании формул понижения степени тригонометрических функций с помощью формул , , , .

7.Функциональные методы решения. Если уравнение не удается свести с помощью различных преобразований к уравнению того или иного стандартного вида, для которого известен определенный метод решения, может оказаться полезным использование таких свойств функций и , как ограниченность, монотонность, четность, периодичность и др.

16. Основные методы решения тригонометрических неравенств

К простейшим тригонометрическим неравенствам относятся неравенства:

(1)

(2)

Для решения таких неравенств можно использовать, в частности, единичную окружность (рис. 1 – 4). Строят «граничные углы», соответствующие равенству в заданном неравенстве (т.е. в случае замены знаков неравенства на знак равенства). Исходя из смысла неравенства определяют множество углов, которые являются решением (если такие имеются). Для строгих неравенств (1) (соотв . рис. 1 – 4) решения приведены в таблице.

Решение простейших тригонометрических неравенств. С помощью единичной окружности нетрудно получить множества решений простейших тригонометрических неравенств.

Рис.1 Рис. 2

Неравенства

Множества решений неравенств (kZ)

tgx > a

tgx < a

Рис. 3

Более сложные тригонометр. неравенства решаются сведением к простейшим (если это возможно).

Если решают нестрогие неравенства, то в соответствующие промежутки, указанные во множестве решений (см. таблицу) включают граничные точки. При этом следует учитывать, что для неравенств, содержащих и не включаются концы промежутка, которые не входят в ОДЗ этих функций. Если задано тригонометрическое неравенство, которое не является простейшим, то его решают вначале в зависимости от типа (в частности, разложением на множители, заменой переменной), а затем решают полученные простейшие неравенства.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]