Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zachet_po_ifzike.docx
Скачиваний:
26
Добавлен:
16.04.2019
Размер:
532.69 Кб
Скачать

23. Применение первого начала термодинамики к адиабатическому процессу. Политропический процесс.

  политропный процесс, изменение состояния физической системы, при котором сохраняется постоянной её Теплоёмкость (С). Кривая на термодинамических диаграммах, изображающая П. п., называется политропой (См. Политропа). Простейшим примером обратимого П. п. может служить П. п. с идеальным газом (См. Идеальный газ), определяемый уравнением pV n = const, где р — давление, V — объем газа,  Cp и Cv  теплоёмкости газа соответственно при постоянном давлении и объёме). ИспользуяУравнение состояния идеального газа, уравнение политропы можно записать в ином виде:  Т — абсолютная температура). уравнение П. п. идеального газа включает, как частные случаи, уравнения: адиабаты (См. Адиабата) (С = 0, n = Cp/Cv, это отношение теплоёмкостей обозначают γ), изобары (См. Изобара) (С = Ср, n = 0), изохоры (См. Изохора) (С = Cv, n = ∞) и Изотермы (С = ∞, n = 1). Работа А идеального газа в П. п. против внешнего давления определяется по формуле 

Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии.

Адиабатический процесс является частным случаем политропного процесса. Адиабатические процессы обратимы, если их проводить достаточно медленно (квазистатически). В общем случае адиабатический процесс необратим.

Некоторые авторы (в частности, Л.Д.Ландау) называли адиабатическими только квазистатические адиабатические процессы.[1]

Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой.

[Править]Первое начало термодинамики

Для адиабатического процесса первое начало термодинамики в силу отсутствия теплообмена системы со средой имеет вид

где:

  •  - изменение внутренней энергии тела,

  •  - работа, совершаемая системой

[Править]Уравнение Пуассона

Для идеальных газов адиабата имеет простейший вид и определяется уравнением:

где:

  •  — давление газа,

  •  — его объём,

  •  — показатель адиабаты,

  •  и   — теплоёмкости газа соответственно при постоянном давлении и постоянном объёме.

[Править]Показатель адиабаты

Для нерелятивистского невырожденного одноатомного идеального газа k = 5/3, для двухатомного k = 7/5, для трёхатомного k = 4/3, для газов состоящих из более сложных молекул, показатель адиабаты, k определяется степенью свободы конкретной молекулы. При адиабатическом процессе показатель адиабаты равен  где R - универсальная газовая постоянная

С учётом уравнения состояния идеального газа уравнение адиабаты может быть преобразовано к виду:

, где T — абсолютная температура газа.

Или к виду:

Поскольку k всегда больше 1, из последнего уравнения следует, что при адиабатическом сжатии (т.е. при уменьшении V) газ нагревается (T возрастает), а при расширении — охлаждается, что всегда верно и для реальных газов.

24. Поверхностный слой жидкости. Поверхностное натяжение. Коэффициент поверхностного натяжения и его зависимость от температуры и примесей пав

Поверхностный слой,

 тонкий слой вещества близ поверхности соприкосновения двух фаз (тел, сред), отличающийся по свойствам от веществ в объёме фаз. Особые свойства П. с. обусловлены сосредоточенным в нём избытком свободной энергии (см. Поверхностная энергия, Поверхностное натяжение), а также особенностями его строения и состава. П. с. на границе конденсированных фаз часто называют межфазным слоем. Толщина П. с. зависит от разности плотностей фаз, интенсивности и типа межмолекулярных взаимодействий в граничной зоне, температуры, давления, химических потенциалов и др. термодинамических параметров системы. В одних случаях она не превышает толщины мономолекулярного слоя, в других — достигает десятков и сотен молекулярных размеров. Так, П. с. жидкостей вблизи критических температур смешения могут иметь толщину 1000   (100 нм) и более. П. с., образованный молекулами (или ионами) адсорбированного вещества, называется адсорбционным слоем. Особенно резко изменяются состав и свойства П. с. при адсорбции поверхностно-активных веществ. Адсорбционное, хемосорбционное и химическое воздействия на П. с. твёрдого тела могут вызвать его лиофилизацию или лиофобизацию (см. Лиофильность и лиофобность), привести к понижению его прочности (см. Ребиндера эффект) или, наоборот, повысить механические характеристики. Состояние П. с. различных конструкционных, радиотехнических и др. материалов сильно отражается на их эксплуатационно-технических и технологических характеристиках. Со свойствами П. с. связаны многообразные поверхностные явления в окружающем нас мире.

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Статические методы:

  1. Метод поднятия в капилляре

  2. Метод Вильгельми

  3. Метод лежачей капли

  4. Метод определения по форме висячей капли.

  5. Метод вращающейся капли

Динамические методы:

  1. Метод Дю Нуи (метод отрыва кольца).

  2. Сталагмометрический, или метод счета капель.

  3. Метод максимального давления пузырька.

  4. Метод осциллирующей струи

  5. Метод стоячих волн

  6. Метод бегущих волн

Поверхностное натяжение, стремление вещества (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади поверхности раздела фаз (размерность Дж/м2). Согласно другому определению, поверхностное натяжение – сила, отнесенная к единице длины контура, ограничивающего поверхность раздела фаз (размерность Н/м); эта сила действует тангенциально к поверхности и препятствует ее самопроизвольному увеличению.

Поверхностное натяжение – основная термодинамическая характеристика поверхностного слоя жидкости на границе с газовой фазой или другой жидкостью. Поверхностное натяжение различных жидкостей на границе с собственным паром изменяется в широких пределах: от единиц для сжиженных низкокипящих газов до нескольких тысяч мН/м для расплавленных тугоплавких веществ. Поверхностное натяжение зависит от температуры. Для многих однокомпонентных неассоциированных жидкостей (вода, расплавы солей, жидкие металлы) вдали от критической температуры хорошо выполняется линейная зависимость:

Пове́рхностно-акти́вные вещества́ (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.

Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация). В результате такой агрегации образуются так называемые мицеллы. Отличительным признаком мицеллообразования служит помутнение раствора ПАВ. Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]