Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_po_Biokhimii_i_molekulyarnoy_biologii.doc
Скачиваний:
1941
Добавлен:
10.06.2015
Размер:
37.27 Mб
Скачать

Лекция 22 катаболизм жирных кислот

Свободные жирные кислоты образуются при расщеплении экзогенных и эндогенных липидов. Последние чаще всего представлены триацилглицеролами, которые откладываются в клетках в качестве резервного источника энергии и углерода. Кроме того, клетки используют и полярные липиды мембран, метаболическое обновление которых происходит постоянно. Свободные жирные кислоты, образующиеся в процессе липолиза, могут реутилизироваться в ходе анаболических процессов или подвергаться дальнейшему расщеплению. Большинство аэробных клеток способны к полному окислению жирных кислот до углекислого газа и воды.

Катаболизм жирных кислот в живых организмах протекает в три стадии: 1) β-окисление ‒ специфический путь окисления свободных жирных кислот, заканчивающийся образованием ацетил-СоА; 2) цикл лимонной кислоты, в котором осуществляется расщепление ацетильных остатков, образовавшихся при β-окислении ЖК; 3) окислительное фосфорилирование в дыхательной цепи с образованием АТР за счет энергии NADH и FADН2 (рис.22.1).

Рис.22.1. Три этапа β-окисления пальмитиновой кислоты

В начале 20 века Ф. Кнооп установил, что процесс расщепления жирных кислот происходит путем последовательного отщепления двууглеродных фрагментов (СН3СОО), начиная с карбоксильного конца молекулы.

Ф. Кнооп назвал этот процесс β-окислением, чтобы подчеркнуть, что каждый раз перед расщеплением связи Сαβ происходит окисление β-углеродного атома. Химизм этого процесса с детальным описанием отдельных стадий и ферментов был изучен спустя примерно 50 лет после открытия Ф. Кноопа в работах А. Ленинджера, Ф. Линена, Ю. Кеннеди.

β-окисление ‒ основной путь катаболизма жирных кислот, менее значимым является α-окисление и ω-окисление. Прежде чем вступить на путь окисления, жирная кислота должна быть активирована.

Активация жирной кислоты

Свободные ЖК превращаются в тиоэфиры коэнзима А (НSCoA) – активированную, высокоэнергетическую форму. В процессе активации принимает участие ацил-СоА-синтетаза, использующая молекулу АТР для образования продукта реакции с макроэргической ацилтиоэфирной связью. Известно три типа ацил-СоА-синтатез, характеризующихся различной субстратной специфичностью. Одна из них проявляет высокую специфичность в отношении ацетата (двууглеродного соединения ‒ С2), другая ‒ к жирным кислотам со средней длиной цепи (С412), третья специфична к жирным кислотам с большой длиной цепи (С1422). Два последних фермента участвуют в катаболизме как насыщенных, так и ненасыщенных жирных кислот. У прокариот ацил-СоА-синтетазы являются отдельными ферментами, присоединенными к плазматической мембране. У эукариот эти ферменты находятся во внешней мембране митохондрий.

Активация жирной кислоты является двустадийным процессом. На первой стадии происходит взаимодействие жирной кислоты с молекулой АТР, при этом образуется промежуточный ациладенилатный комплекс.

Mg2+

RCH2COO- + ATP → RCH2C О ~ AMP + PPi

Ациладенилат остается связанным с ферментом, а пирофосфат под действием неорганической пирофосфатазы расщепляется на две молекулы ортофосфата.

неорганическая

пирофосфатаза

Н4Р2О7 + Н2О → 2 Н3РО4

На второй стадии ациладенилатный комплекс взаимодействует с HSCoA, в результате образуется тиоэфир жирной кислоты, вторым продуктом реакции является АМР.

Mg2+

RCH2CО ~ AMP + HSCoA → RCH2CО ~SCoA + AMP

Суммарная реакция:

Mg2+

RCH2COO- + ATP + HSCoA + Н2О → RCH2CО ~SCoA + AMP + 2Pi + Н+

∆G = ‒15 кДж/моль (для двухстадийного процесса).

Дальнейшее расщепление СоА-производных жирных кислот осуществляется в матриксе митохондрий. Молекулы ацил-СоА способны проникать через внешнюю митохондриальную мембрану, но внутренняя мембрана является для них непреодолимым барьером. Существует специальный механизм, благодаря которому ацил-СоА преодолевают и внутреннюю митохондриальную мембрану.