Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
132
Добавлен:
07.03.2015
Размер:
2.85 Mб
Скачать

3.7. Экосистемы и их основные свойства

Экосистема – это греческое слово oikos – дом, system – целое, то есть составленное из частей или соединение. Этот термин ввёл в экологию Анри Барри Тенсли (1935 г.). Он писал: «Хотя организмы могут претендовать на то, чтобы им уделяли основное внимание, однако, если глубже вдуматься, мы не можем отделить их от конкретной окружающей среды, вместе с которой они составляют единую физическую систему. Такие системы, с точки зрения эколога, являются основными единицами природы на земной поверхности». А. Тенсли представлял экосистему как сочетание биотопа и биоценоза.

Следовательно, экосистема ─ это исторически сложившиеся в биосфере и на той именно территории или акватории открытые, но целостные и устойчивые системы живых (автотрофных продуцентов и гетеротрофов ─ консументов и редуцентов) и неживых (абиотической среды) компонентов.

По К. Вилли, под термином «экосистема» экологи понимают естественную единицу, представляющую совокупность живых и неживых элементов: в результате взаимодействия этих элементов создаётся стабильная система, где имеет место круговорот веществ между живыми и неживыми частями.

В данных определениях экосистема характеризуется потоками энергии и возможностью её накопления, внутренними и внешними круговоротами веществ, которые обладают способностью к регулированию всех процессов в ней (рис.3.7). Экологическая система считается основной (главной) функциональной единицей в экологии, так как в неё входят живые организмы и неживая среда, элементы, взаимовлияющие друг на друга и обеспечивающие необходимые условия для поддержания жизни в той форме, которая существует на нашей планете.

С

Проду-

центы

Траво-

ядные

Плотояд- ные

олнце

Деструкторы

Дыхание, СО2

Рис.3.7. Схема главных составных частей экосистемы (по Е.А. Крикуновскому, 1995 г.)

Экосистема как природный комплекс, образованный живыми организмами и средой их обитания, связанные между собой обменом веществом и энергией, является одним из главных понятий в экологии.

Экосистемы различают по следующим рангам:

─ микросистемы (например, небольшой водоем, лужа, трухлявый пень в лесу и т.д.);

─ мезоэкосистемы (лес, река, пруд и т.д.);

─ макроэкосистемы (океан, континент, аэротоп);

─ глобальная экосистема (биосфера в целом).

Из данной иерархичности следует, что крупные экосистемы включают в себя экосистемы более низшего ранга.

Биоценоз и биотоп воздействуют друг на друга, что проявляется в основном в непрерывном обмене веществом и энергией как между двумя составляющими, так и внутри каждой из них. Экосистема же включает в себя сообщества (фитоценозы, зооценозы, микробиоценозы, микоценозы), объединенные пищевыми и хорологическими (пространственными) связями, а также такие факторы среды, как экотоп, климатоп и эдафотоп. Естественные экологические системы – это открытые системы, в которых рассматривают среду на входе и выходе (рис.3.8).

Постоянное существование организмов в любом ограниченном пространстве возможно лишь в экосистемах, внутри которых отходы жизнедеятельности одних видов организмов утилизируются другими видами. Следовательно, всякая экосистема, способная к длительному существованию, должна включать в себя автотрофы, гетеротрофы и редуценты (сапрофиты), питающиеся отмершим веществом, но даже такая экосистема не застрахована от гибели. Устойчивость экосистем определяется соответствием видового состава к условиям жизни и степенью развитости этих систем.

Среда

Среда

Система в своих границах

Переработанная

Энергия и вещество

Миграция организмов

На входе JF + S + OE = Экосистема

На выходе

Вещество и организм

Рис.3.8. Функционирование экосистемы (по Одуму, 1986 г.)

Возможные изменения среды сильно колеблются и зависят от многих переменных размеров системы (чем система больше, тем меньше она зависит от внешних воздействий); интенсивности потоков веществ и энергии (чем он интенсивнее, тем больше их отток и приток); сбалансированности автотрофных и гетеротрофных процессов (чем больше нарушено это равновесие, тем сильнее должен быть внешний приток веществ и энергии для её восстановления); стадии и степени развития экосистемы. По своей сути экологическая система представляет собой комплекс, в котором между абиотическими и биотическими элементами происходит постоянный обмен веществом, энергией и информацией.

Оценка качества экосистем. Экологические закономерности и основные понятия экологии способствуют определению качественного и количественного состояния экосистемы.

Под количественным состоянием экосистемы понимается её продуктивность, под качественным ─ устойчивость по отношению к неблагоприятным факторам воздействия. Эти же закономерности способствуют определению качественного и количественного состояния биоценозов той или иной экосистемы.

Согласно первой закономерности экосистема должна соответствовать особенностям среды, второй – биоценоз по возможности должен быть относительно дешёвым, третьей и четвертой – экосистема должна обеспечивать максимальную утилизацию и устойчивость. Например, если мы создаем в экосистеме промышленное производство, то мы должны делать оборотную систему водоснабжения; остаточные отходы производства – утилизировать и перерабатывать; остаточное же тепло – использовать для других технологических процессов, на обогрев теплиц и т.д. Академик С. Шварц предложил оценивать качество экосистем по пяти признакам: по биомассе, продуктивности, помехоустойчивости, скорости обмена и резервированию.

Биомасса всех основных составляющих должна быть высокой и соотнесенной с остальными компонентами экосистемы. Если взять агроэкосистему, то её особенностью является преобладание фитомассы над зоомассой, которое выражено в резкой форме, она обеспечивает продуцирование кислорода, производство продуктов животного и растительного происхождения.

Продуктивность экосистемы – это выход продукции с единицы площади, объема (биогеоценоза и экосистемы), когда достигается её максимум, она должна удовлетворять все потребности и сохранять экосистему в устойчивом состоянии. Как негативный пример можно привести бесконтрольную вырубку лесов, вследствие этого снижается биомасса лесных массивов и это может привести к уничтожению экосистемы в течение нескольких лет.

Помехоустойчивость – это устойчивость экосистемы к загрязнению до определенного предела, которое не выводит её из строя. В настоящее время большое количество экосистем крайне не устойчивы, в них можно видеть лишь две условно положительные стороны: они давали и дают нам возможность наращивать материальные блага и они же вызвали «экологический кризис». Устойчивость экосистемы подразделяют на резистентную устойчивость и упругую. Резистентная устойчивость (сопротивляемость) – это свойство (способность) экосистемы сопротивляться нарушениям, поддерживая свою структуру и функцию. Упругая устойчивость – способность системы быстро восстанавливаться после нарушения структуры и функции.

Скорость обмена веществом и энергией протекает в экосистеме с такой интенсивностью, что при большом загрязнении обеспечивается быстрая её биологическая очистка. Но скорость – очистки не самоцель! Например, избыточное хлорирование воды ускоряет процесс её обеззараживания, но соединения хлора в воде могут дать диоксины – супертоксиканты, опасные для живых организмов, в том числе и самого человека. Хлор разрушает зубную эмаль, а это приводит к кариесу зубов. Приём озонирования воды дороже, но относительно безопаснее для экосистемы и человека.

Резервирование – это способность экосистемы к быстрой перестройке и приспособлению к изменившимся условиям без потерь других положительных свойств. Человек должен стремиться создавать хорошие экосистемы повсюду, где требуется и где это возможно. Он должен не ухудшать, а улучшать окружающую природную среду: путем ликвидации очагов особо опасных заболеваний, резко сокращать площади размножения саранчи, остановить движение песков и т.д. Здесь уместно сослаться на принцип Ле Шателье-Брауна: при внешнем воздействии, выводящем экологическую систему из состояния устойчивого равновесия, равновесие всегда смещается в том направлении, при котором эффект воздействия ослабляется.

Пространственная структура экосистем вызвана тем, что автотрофные и гетеротрофные процессы обычно разделены в пространстве. Первые активно протекают в верхних слоях, где доступен солнечный свет, а вторые интенсивнее в нижних слоях (почвах и донных отложениях). Кроме того, они разделены и во времени, поскольку существует временной разрыв между образованием органических веществ растениями и минерализацией их консументами.

С точки зрения пространственной структуры в природных экосистемах можно выделить следующие ярусы:

- верхний, автотрофный ярус или зелёный пояс Земли, который включает растения или их части, содержащие хлорофилл: здесь происходит фиксация солнечной энергии, использование неорганических соединений и накопление энергии в сложных синтезируемых растениями веществах;

- нижний, гетеротрофный ярус или «коричневый пояс» Земли, представлен почвами, донными осадками, в которых преобладают процессы разложения мёртвых органических остатков растений и животных.

Экосистемы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая тем самым энтропию внутри себя, но увеличивая её внешне, в соответствии с законами термодинамики. Способность живых организмов снижать неупорядоченность внутри себя интерпретируется как способность накапливать отрицательную энтропию – негэнтропию.

Энергия в экосистемах. Энергия это одна из основных свойств материи, которая способна производить работу, а в широком понимании энергия сила. Она  источник жизни, основа и средство управления всеми природными системами, движущая сила мироздания. Фундаментальные законы термодинамики имеют универсальное значение в природе, а понимание этих законов важно для обеспечения эффективного подхода к проблемам природопользования.

Эксергия – это максимальная работа, которую совершает термодинамическая система при переходе из данного состояния в состояние физического равновесия с окружающей средой.

Эксергией называют полезную работу участвующей в каком-то процессе энергии, величина которой определяется степенью отличия какого-то параметра системы от его значения в окружающей среде.

Первый закон термодинамики – закон сохранения энергии – гласит: энергия не создаётся и не исчезает, а превращается из одной формы в другую. На земле энергия Солнца превращается при помощи фотосинтеза в энергию пищи. Экология рассматривает здесь только существующую связь между солнечным светом и экологическими системами, в которых происходит превращение энергии Солнца в энергию органического вещества.

Согласно второму закону термодинамики любой вид энергии в конечном счёте переходит в форму, наименее пригодную для использования и наиболее рассеивающуюся – энтропию, которая становится недоступной для использования. Для всех энергетических процессов характерен процесс перехода от более высокого уровня организации (порядка) к более низкому (беспорядку). Тенденция энергии к деградации выражается термином «возрастание энтропии». Энтропия же является мерой беспорядка. Энергия пищи, поглощенная животными, частично идёт на протекание биохимических процессов в организме, а частично переводится в теплоту для обогрева тела.

Живая материя отличается от неживой способностью аккумулировать из окружающего пространства свободную энергию и преобразовывать её так, чтобы противостоять энтропии. В природе показателем качества энергии солнечного света считается образование более высококачественной формы энергии (табл.3.2).

Таблица 3.2. Качественное состояние получаемой энергии, ккал

Источник энергии

Затраты энергии для получения более качественной энергии

Солнечная радиация

2000

Биомасса растений

200

Древесина

Уголь

Электроэнергия

20

1.0

0.2 кВтּч

Так, от 2000 ккал солнечной энергии, поступающей на листовую поверхность растений, получается 200 ккал пищевой энергии, а энергия, заключенная в древесине, составляет всего 20, в угле – 1,0 ккал. При переводе угольной энергии в электрическую энергию получается всего лишь только 0,2 кВт·ч.

Чтобы солнечная энергия выполняла ту же работу, которую может выполнять электрическая энергия, её качество необходимо повысить в 10 тыс. раз. На каждом новом уровне 90 % потенциальной энергии рассеивается, переходя в тепло. Человеку для физиологического функционирования в год требуется около 1 млн ккал энергии пищи. Человечество производит всего примерно 8∙1015 ккал энергии (при населении 6,7 млрд человек), но эта энергия распределена по территории планеты крайне неравномерно. Например, в городе потребление энергии на человека достигает 80 млн ккал в год, это количество энергии распределяется на все виды деятельности (транспорт, домашнее хозяйство, промышленность), т.е. человек расходует в 80 раз больше энергии, чем необходимо для функционирования организма.

В настоящее время человечество находится в стадии энергетического кризиса и характер будущей цивилизации, его качество и состав лимитируются, в первую очередь, энергетическими затратами. Выход для человеческого общества из данного кризисного состояния ─ использование альтернативной энергии и крупномасштабное энергосбережение.

Закон максимилизации энергии (Г.Одум–Ю.Одум): в соперничесве с другими экосистемами выживает (сохраняется) та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное её количество наиболее эффективным способом.

Морские экосистемы. Глубина океана достаточна большая, местами доходит до 11,5 км. В отличие от суши и пресных вод, морская экосистема непрерывна. Жизнь в океане существует во всех его уголках, но наиболее богата вблизи материков и островов. В океане практически отсутствуют абиотические зоны несмотря на то, что барьерами для передвижения животных являются температура, солёность и глубина.

Благодаря постоянно действующим ветрам-пассатам, в океанах и морях происходит постоянная циркуляция воды за счёт мощных течений (Гольфстрим – теплое, Калифорнийское – холодное и др.), что исключает дефицит кислорода в глубинах океана.

Наиболее продуктивны в Мировом океане места апвелинга. Апвелинг – процесс подъёма холодных вод с глубины океана, где ветры постоянно перемешивают тёплую воду у крутого материкового склона, взамен которой из глубины поднимается холодная вода, обогащённая биогенами. Там, где нет этого водообмена, биогенные элементы из погрузившихся органических остатков на длительное время остаются в донных отложениях. Высокопродуктивны и богаты они биогенами, за счёт привноса их с суши, воды эстуариев (дельт). Ю. Одум называет это явление аутвелингом.

В прибрежной зоне весьма велика роль приливов и отливов, вызванных притяжением Луны и Солнца. Они обеспечивают заметную периодичность в жизни сообществ (биологические часы). Для морских водоёмов характерна устойчивая щелочная среда: рН = 8,2, но соотношение солей и солёность изменяются. В воде солоноватых устьев рек прибрежной зоны солёность значительно колеблется по сезонам года. Поэтому организмы в прибрежной зоне эвригалинны, в то время как в открытом океане стеногалинны.

Биогенные элементы – важный лимитирующий фактор в морской среде, где их содержится несколько частей на миллион частей воды. К тому же время пребывания их в воде вне организмов намного короче, чем натрия и магния и других элементов. Биогенные элементы, растворённые в воде быстро перехватываются организмами и попадают в их трофические цепи, они практически не попадают в гетеротрофную зону (не проходят биологический круговорот). Поэтому низкая концентрация биогенных элементов в морской воде не говорит об их всеобщем дефиците.

Главным фактором, который дифференцирует морскую биоту, является глубина воды в морях и океанах. В целом толщу морской воды в разрезе подразделяют на следующие зоны: эвфотическая зона – самая верхняя часть океана, куда проникает свет и где создаётся первичная продукция. Её мощность доходит в открытом океане до 200 м, а в прибрежной части – не более 30 м. Это сравнительно тонкая плёнка, которая отделяется компенсационной (до 1,0 – 1,5 км) зоной от значительно большей водной толщи, вплоть до самого дна – афотической зоны.

Так же как и в пресноводных лентических (текучих) экосистемах, всё население океана делится на планктон, нектон и бентос. Планктон и нектон, то есть всё, что живёт в открытых водах океана, образует так называемую пелагическую зону.

Биотическое сообщество каждой из перечисленных выше зон, кроме эвфотической, разделяется на бентосные и пелагические зоны. В них к первичным консументам относят зоопланктон, насекомых в море экологически заменяют ракообразные. Подавляющее число крупных животных – хищники. Их мало в пресноводных системах. Многие из них напоминают растения и отсюда их названия, например, морские лилии. Здесь широко развиты мутуализм и комменсализм. Все животные бентоса в своём жизненном цикле проходят пелагическую стадию в виде личинок.

Характеристика морских экосистем. Область континентального шельфа, неретическая область, ограничена глубиной 200 м, которая составляет около 8 % площади океана (29 млн км2). Прибрежная зона благоприятна по условиям питания, даже в дождевых тропических лесах нет такого разнообразия жизни как здесь. Очень богат кормом планктон за счёт личинок бентосной фауны. Личинки, которые остаются несъеденными, оседают на субстрат и образуют либо эпифауну (прикреплённую), либо инфауну (закапывающуюся).

Области апвелинга расположены вдоль западных пустынных берегов континентов. Они богаты рыбой и птицами, живущими на островах. Но при изменении направления ветра происходит цветение планктона и наблюдается массовая гибель рыб вследствие эвтрофикации.

Лиманы – это полузамкнутые прибрежные водоёмы, представляют собой экотопы между пресноводными и морскими экосистемами. Лиманы обычно входят в материковую (прибрежную) зону, подвержены приливам и отливам. Лиманы высокопродуктивны и являются ловушками биогенных веществ. Служат они местом откорма молоди и богаты целым комплексом морепродуктов (рыба, крабы, креветки, устрицы и т.д.). Попадая в сферу хозяйственной деятельности, теряют значительно свою продуктивность вследствие загрязнения водной среды.

Океанические области, эвфотическая зона открытого океана, бедна биогенными элементами. В известной мере эти воды по продуктивности можно приравнивать к наземным пустыням. Арктические и антарктические зоны намного продуктивнее, так как плотность планктона растёт при переходе от тёплых морей к холодным, и фауна рыб и китообразных значительно богаче.

Фитопланктон является первичным источником энергии в пищевых цепях пелагической области – продуцентом. Крупные рыбы и животные здесь являются преимущественно вторичными консументами, питающимися зоопланктоном. Продуцентом для зоопланктона являются как фитопланктон, так и планктоновые личинки моллюсков, морских лилий и т.д.

Видовое разнообразие фауны снижается с глубиной и тем не менее разнообразие рыб в зоне велико, несмотря на то, что практически лишена продуцентов. Разнообразие связано со стабильностью условий в абиссальной зоне (на глубине от 2000 до 5000 м) в течение длительного геологического времени, что замедлило эволюцию и сохранило многие виды из далёких геологических эпох.

Океан является колыбелью жизни на планете и ещё множество загадок хранят его водные толщи и океаническое ложе. Появление жизни в океане положило начало формированию биосферы. И сейчас, занимая более 2/3 поверхности суши, он определяет во многом, в сочетании с материковыми экосистемами, целостность современной биосферы Земли.

Соседние файлы в папке Учебник Мельцаева