
- •Глава 3 электрические переходы в полупроводниковых приборах
- •3.1. Электрические переходы
- •3.2. Электронно-дырочный переход в равновесном состоянии
- •3.2.1. Структураp-n-перехода
- •3.2.2. Образование p-n-перехода
- •3.2.3. Энергетическая диаграмма p-n-перехода в состоянии равновесия. Формула для контактной разности потенциалов
- •3.2.4. Распределение напряженности электрического поля и потенциала в р-n-переходе
- •3.3. Электронно-дырочный переход в неравновесном состоянии
- •3.3.1. Потенциальный барьер
- •3.3.2. Толщина р-n-перехода
- •3.3.3 Энергетические диаграммы р-n-перехода
- •3.4. Вольт-амперная характеристика идеализированного р-n-перехода
- •3.5. Вольт-амперная характеристика реального р-n-перехода
- •3.5.1. Учет генерации и рекомбинации носителей заряда в обедненном слое
- •3.5.2. Учет сопротивлений областей
- •3.5.3. Пробой р-n-перехода
- •3.6. Параметры и модель р-n-перехода в динамическом режиме
- •3.6.1. Дифференциальное сопротивление
- •3.6.2. Барьерная емкость
- •3.6.3. Диффузионная емкость
- •3.6.4. Малосигнальная модель p-n-перехода
- •3.7. Частотные свойства p-n-перехода
- •3.8. Импульсные свойства р-n-перехода
- •3.8.1. Переходные процессы при скачкообразном изменении полярности напряжения
- •3.8.2. Переходные процессы при воздействии импульса прямого тока
- •3.9. Контакт металл - полупроводник и гетеропереходы
- •3.9.1. Контакты металл полупроводник
- •3.9.2. Гетеропереходы
3.9.2. Гетеропереходы
В отличие от р-n-перехода, образованного изменением концентрации примеси в одном полупроводниковом материале (гомопереход) гетеропереходом называют переход, образованный полупроводниками различной физико-химической природы, т.е. полупроводниками с различной шириной запрещенной зоны. Примерами гетеропереходов могут быть переходы германий – кремний, германий – арсенид галлия, арсенид галлия – фосфид галлия и др.
Для получения гетеропереходов с минимальным числом дефектов на границе раздела кристаллическая решетка одного полупроводника должна с минимальными нарушениями переходить в кристаллическую решетку другого. В связи с этим полупроводники, используемые для создания гетеропереходов, должны иметь идентичные кристаллические структуры и близкие значения постоянной решетки. Гетеропереходы, образованные полупроводниками с различной шириной запрещенной зоны, возможны не только как переходы между полупроводниками р- и n-типа, но также и между полупроводниками с одним типом электропроводности: р+-р или п+-п.
Рассмотрим
энергетическую (зонную) диаграмму
гетероперехода между полупроводником
n-типа
с широкой запрещенной зоной и
полупроводником р-типа с узкой запрещенной
зоной (рис. 3.31). На рис. 3.31,а показаны
энергетические диаграммы исходных
полупроводников. За начало отсчета
энергии (нуль) принята энергия электрона,
находящегося в вакууме. Величины А1
и A2
обозначают термодинамические работы
выхода электрона (от уровня Ферми), a
и
–
истинные работы выхода из полупроводника
в вакуум, называемые электронным
сродством полупроводников
(от границы зоны проводимости).
При
создании контакта между двумя
полупроводниками уровни Ферми совмещаются
(выравниваются). Это должно (в отличие
от энергетической диаграммы гомоперехода)
привести к появлению разрывов в зоне
проводимости
и
в валентной зоне
,
как показано на рис. 3.31,б. В зоне
проводимости величина разрыва обусловлена
разностью истинных работ выхода
электронов из р- иn-полупроводников:
(3.64)
а
в валентной зоне кроме этого –
еще и неравенством значений энергии
.
Поэтому потенциальные барьеры для
электронов и дырок будут различными:
потенциальный барьер для электронов в
зоне проводимости меньше, чем для
дырок в валентной зоне.
При подаче прямого напряжения потенциальный барьер для электронов уменьшится и электроны из n-полупроводника инжектируются в р-полупроводник. Потенциальный барьер для дырок в р-области также уменьшится, но все же остается достаточно большим, так что инжекция дырок из р-области в n-область практически отсутствует.
В гомопереходах отношение токов инжекции дырок и электронов можно изменить, только делая различными концентрации основных носителей в областях, т.е. различными концентрации примесей. Если концентрация акцепторов в р-области много больше концентрации доноров в n-области (Nа>>Nд), то и ток инжекции дырок Iр будет много больше тока инжекции электронов In (Ip>>In). Во многих приборах, использующих р-n-переходы, например в биполярных транзисторах, требуется сильная асимметрия токов. Однако увеличению концентрации примесей (в нашем случае акцепторов) есть технологический предел, связанный с наличием предельной концентрации примесей, которую можно ввести в полупроводник («предельная растворимость»). Кроме того, с увеличением концентрации примесей одновременно появляется большое число дефектов, ухудшающих параметры р-n-перехода.
Гетеропереходы позволяют исключить эти недостатки гомоперехода и получить практически одностороннюю инжекцию носителей заряда даже при одинаковых концентрациях примесей в областях. Однако серьезной проблемой на пути реализации преимуществ гетеропереходов является наличие технологических трудностей создания бездефектной границы в гетеропереходах. О конкретных применениях и особенностях гетеропереходов будет сказано в соответствующих разделах.
1Читатель, не желающий знакомиться с методом расчета, может сразу воспользоваться конечным уравнением ВАХ (3.40)