Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Navch-metod_posibnik_z_OPKM (1).doc
Скачиваний:
278
Добавлен:
19.11.2019
Размер:
4.24 Mб
Скачать

§ 14. Функції, графіки та їх властивості

План

  1. Поняття функції. Графік функції.

  2. Лінійна функція.

  3. Пряма пропорційність.

  4. Обернена пропорційність.

  5. Функціональна пропедевтика в початковій школі.

  1. Поняття функції. Графік функції

Означення. Якщо кожному елементу х числової множини Х за правилом f відповідає єдине число у, то говорять, що на множині Х задано числову функцію f (х), і пишуть: . При цьому х називають аргументом, а у – значенням функції. Множину Х називають областю визначення функції, а множину значень, які функція набуває, - її множиною значень; останню позначають через f (Х).

Для області визначення і множини значень функції f застосовують також відповідно позначення і .

Функцію f (х) можна вважати заданою, якщо задано її область визначення Х і правило f , за яким для довільного х з області визначення Х можна знайти (обчислити) відповідне йому значення у, у = f (х).

Останнє правило можна задавати по-різному, що й визначає способи задання функції. Найпоширеніші способи задання функцій такі: аналітичний, табличний та графічний.

Аналітичний спосіб означає задання функції формулою, що показує кількість і послідовність операцій над аргументом х, які необхідні для того, щоб дістати значення цієї функції. Якщо при цьому не зазначається область визначення функції, то під останньою розуміють множину допустимих значень аргументу, тобто множину тих значень аргументу, для яких за формулою можна знайти відповідні значення функції.

Табличний спосіб задання функції полягає в написанні таблиці відповідних значень аргументу та функції. Цей спосіб задання функції часто застосовують в експериментальних дослідженнях, а також у математиці: таблиці квадратів і кубів чисел, таблиці значень тригонометричних функцій та ін.

Щоб розглянути графічний спосіб задання функції, розглянемо спочатку поняття графіка функції.

Означення. Графіком функції , називають множину точок координатної площини, де , а

Графічний спосіб задання функції полягає в тому, що вихідною інформацією про цю функцію є її графік. При цьому для довільного значення х з області визначення Х можна знайти відповідне значення у функції. Прикладом графічного способу задання функції є електрокардіограми, за яким и медики аналізують роботу серця.

У математиці графічне зображення функцій використовують і тоді, коли функція задана аналітичним чи табличним способом. Якщо треба з’ясувати загальний характер поведінки функції та її особливості на деяких підмножинах області визначення, графік, завдяки його наочності є дуже корисним.

Найчастіше графіком функції є деяка лінія координатної площини. Проте не кожна лінія є графіком функції. Справа в тому, що при заданому значенні аргументу х існує лише одне відповідне йому значення функції у. Тому на кожній прямій, паралельній осі ординат, може лежати не більше однієї точки графіка функції.

Наприклад, лінія, зображена нижче не є графіком функції.

2. Лінійна функція

Означення. Лінійною функцією називають функцію виду , де k і b – деякі числа.

Якщо, зокрема, k = 0, то дістають функцію у = b, яку називають сталою.

Областю визначення лінійної функції є множина R.

Графіком лінійної функції є пряма з кутовим коефіцієнтом k і початковою ординатою b.

На рис. зображено графіки л інійних функцій відповіно для k > 0 і k < 0.

Я кщо k > 0, то функція зростаюча, якщо k < 0, то функція спадна.

Наприклад. Задано функцію . Яка це функція? Знайти її область визначення. Чи є вона зростаючою на якій-небудь множині?

Розв’язання. Оскільки , то задану функцію можна записати у вигляді: ; .

Отже, задана функція є лінійною. Її областю визначення як лінійної функції є множина R. Оскільки ця функція спадна на R, то вона не може бути зростаючою на будь-якій множині Р.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]