Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Квантовая запутанность и черные дыры.doc
Скачиваний:
1
Добавлен:
18.11.2019
Размер:
58.88 Кб
Скачать

Часть 3.

Альберту Эйнштейну не нравились в квантовой механике принципиально вероятностный характер, соотношение неопределенностей и вытекающая из него невозможность одновременного определения координат и скоростей частиц, отсутствие ясности в решении проблемы квантовомеханических измерений. Больше всего Эйнштейна раздражала несовместимость его собственных представлений о физической реальности с «копенгагенской» интерпретацией квантовой механики, предложенной Нильсом Бором. Согласно Бору, состояние любой квантовой системы нельзя рассматривать безотносительно к аппаратуре, с помощью которой получена информация о ее поведении. Теория способна предсказать вероятности тех или иных исходов измерений квантовомеханических объектов, но ровно ничего не может сказать о том, каковы же значения измеряемых величин «на самом деле». Состояние «неизмеренной» системы не просто неизвестно — оно вообще не определено, а посему и рассуждать о нем не имеет смысла.

Эйнштейна не устраивала подобная логика, он пытался ее опровергнуть и изобретал воображаемые опыты, которые Бор успешно интерпретировал в свою пользу. Однако Эйнштейн не отступал. В 1935 году он опубликовал описание очередного мысленного эксперимента, который, по его расчетам, неопровержимо доказывал ущербность квантовой теории. Эта модель послужила предметом долгих дискуссий Эйнштейна со своим ассистентом Натаном Розеном и коллегой Борисом Подольским. Авторы (ЭПР) исходили из двух самоочевидных предпосылок. Во-первых, любой атрибут физической системы, который можно предсказать с вероятностью 100% , не возмущая эту систему в процессе измерений, является, по определению, элементом физической реальности. Во-вторых, полное описание системы должно включать в себя сведения обо всех таких элементах (ассоциированных именно с этой конкретной системой). Предположим, что мы изготовили пару одинаковых частиц А и В, которые начинают движение в строго противоположных направлениях с равными импульсами и, следовательно, скоростями. Принцип неопределенности не позволяет одновременно точно измерить положение и импульс каждой частицы, но это и не требуется. Позволим квантовым «близняшкам» удалиться друг от друга, а затем определим координаты частицы А, что в идеале можно сделать с нулевой погрешностью. Мы немедленно получаем достоверную информацию, где находилась в тот же момент и частица В. Наша аппаратура взаимодействовала исключительно с А, а состояние ее сестрицы оставалось невозмущенным. Следовательно, положение частицы В следует счесть элементом физической реальности.

Из этого тупика можно выбраться с помощью догадки Шрёдингера: квантовые корреляции сильнее классических. Тогда все встает на свои места. Мы изготовили пару электронов в спутанном состоянии, отсюда и вся необычность их поведения в ЭПР-эксперименте. Дело в том, что частицы в запутанном состоянии с точки зрения квантовой механики описываются единой волновой функцией. По сути они представляют собой единый объект — единую моду возмущения вакуума, просто два ее пика сильно разнесены в пространстве. Таким образом проведя измерение состояния одной из частиц пары мы влияем на обе и состояние второй изменяется в тот же момент как мы измерили состояние первой. То есть если мы измерили координату одной из частиц то для второй она становится полностью неопределенной и мы не сможем ее зарегистрировать в области предсказанной моделью ЭПР.