- •3. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •4.Метод сечения, виды внутренних силовых факторов.
- •5.Растяжение. Основные понятия, допущения и зависимости.
- •6.Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •7.Механические хар-ки. Диаграмма растяжения.
- •8.Деформация при растяжении (продольные, поперечные, коэф-т Пуассона).
- •9.Растяжение. Напряжение на наклонной поверхности стержня.
- •10.Кручение, основные понятия, обозначение, правило знаков.
- •11.Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12.Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения, зависимости, закон парности. Расчет на срез.
- •15. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •16.Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •17.Теории предельных состояний. Общие понятия и назначение. 1,2,3 теории.
- •18. Теории предельных состояний. Общие понятия и назначение. 4,5 теории.
- •19. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб и растяжение
- •20.Косой изгиб
- •21.Изгиб и растяжение (сжатие)
- •22. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб с кручением
- •23. Усталостная прочность. Общие понятия, назначение. Параметры циклов нагружения
- •24. Усталостная прочность. Общие понятия, назначение. Предел выносливости при симметричном цикле
- •25. Усталость. Факторы, влияющие на предел усталости. Общие понятия, назначение
- •26. Усталость. Общие понятия, назначение. Расчет на прочность при переменных напряжениях
- •27. Реальный объект и его схема. Схематизация свойства материала, формы элементов конструкций нагрузок
- •28. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений
- •29. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация
- •30. Растяжение и сжатие. Определение внутренних сил. Натяжение в попересных и наклонных сечениях.
- •31) Продольная и поперечная деформация при растяжении и сжатии. Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •32. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •33. Расчёт на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •34. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •35. Кручение бруса круглого, поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •36. Геометрические характеристики брусьев круглого, поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11) Расчёт валов на прочность и жёсткость при кручении.
- •37. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечения.
- •38.Прямоугольное сечение.
- •39.Круглое сечение
- •40. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •41. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •42. Расчет на прочность при изгибе
- •43. Напряжение в брусе при поперечном изгибе
- •44. Аналитический метод определения перемещений в балке при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •45. Потенциальная энергия бруса в общем случае нагружения.
- •46. Определение перемещения бруса способом Верещагина
- •47. Напряженные состояния в точках тела . Главные площадки и главные напряжения . Виды напряженного состояния.
- •48. Деформация бруса при объемном ,напряженном состоянии. Обобщенный закон Гука.
- •49. Теории (гипотезы) прочности и их назначение . Понятие о эквивалентных напряжениях . Содержание и области применения теории прочности.
- •50. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •51. Понятие об усталостной прочности. Основные характеристики цикла переменных напряжений.
- •52. Прочность при перемещенных напряжениях.
- •53.Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •54. Расчет на прочность при переменных напряжениях.
- •55. Местные напряжения. Концентрация напряжения
- •56. Контактные напряжения. Формула Герца
- •57.Устойчивость.
8.Деформация при растяжении (продольные, поперечные, коэф-т Пуассона).
Растяжение – это такой вид нагружения, когда в поперечном сечении растянутого тела действуют только продольные силы N. Деформация – когда деталь изменяет линейные размеры и больше не возвращается в начальное состояние.
Рассмотрим деформацию бруса под действием продольной силы. l – начальная длина, b – начальная ширина, ∆ l – абсолютное удлинение, ∆b – абсолютное сужение.
Относительная продольная деформация Ε:
Ε=∆l/l.
При растяжении тела происходит изменение его поперечного сечения, т.е. сужение. Линейная (поперечная) деформация:
Ε1=∆b/b. Е и Е1 безразмерные величины.
Данные деформации учитывают в точных расчётах.
μ=Ε1/Ε – коэф-т относительной деформации, или коэф-т Пуассона, - хар-ка пластичности материала. Его величина находится в пределах 0…0,5 (для пробки μ=0, для резины μ=0,5).
9.Растяжение. Напряжение на наклонной поверхности стержня.
Растяжение – это такой вид нагружения, когда в поперечном сечении растянутого тела действуют только продольные силы N.
Разрежем стержень по сечению под углом α с осью Oy и отбросим левую часть. Правая часть сохраняет равновесие , так как сила F, действующая на перпендик. оси Ox площадку ∆S, уравновешивается силой F, действующей на наклонную площадку ∆S’=∆S/cosα, т.е. σ∆S=Р∆S/ cosα.
Возникшее на наклонной площадке полное напряжение Р= σ cosα..
Разложив напряжение Р на 2 составляющих, находим нормальное и касательное напряжения: σα=Р cosα= σ cos2α и τα=Рsinα=0,5 σsin2α.
Из формул следует:
При α=0: σα= σ, τα=0
При α=45: σα= 0,5σ, τα=0,5σ
При α=90: σα=0, τα=0
Значит, максимальное нормальное напряжение возникает в поперечных сечениях бруса; максимальное касательное напряжение возникает в сечениях, наклоненных к оси стержня под углом 45.
Закон парности касательного напряжения:
Касат. напряжение на 2-ух взаимно перпендик. плоскостях пар-да равны по абсолют. вел-не и направлены или к ребру, или от ребра.
10.Кручение, основные понятия, обозначение, правило знаков.
Кручение – такой вид нагружения, когда в поперечных сечениях тела действуют только крутящие моменты Т. Кручение происходит при нагружении бруса парами сил с моментами в плоскостях, перпендик. продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ, наз улом сдвига. Попереч. сечения разворач-ся на угол φ, наз. углом закручивания. Длина бруса и размеры поперечного сечения при кручении не измен-ся.
Правило знаков:
Рассматриваем конструкцию с торца: действие момента против часовой стрелки имеет положит. знак, по часовой – отриц. знак.
Крутящий момент – суммарный момент сил упругости.
Кручение. Напряжение и деформация.
Расчетная схема лабораторного образца:
а1 – новое положение после кручения, гамма – угол сдвига, фи –полный угол закручивания.
а1а2 = гамма dx = t* dx
гамма = r *dфи /dx = r*фи нулевое
dфи /dx – относительный угол поворота, приходящийся на единицу длины
t = G *гамма = G*фи нулевое *r
t – зависит от r поперечного сечения
Внутренняя сила т.К определяется:
dQ =[t] * dS = G * фи нулевое *r * dS
dM – элементарный момент = ро*dQ = ро*G*фи нулевое*r *dS
ро – текущий радиус
Mk = ро*dQ = G *фи нулевое интеграл ро в квад.*dS
Yp = ро в квад.*dS – полярный момент инерции поперечного сечения стержня, это есть геометрическая характеристика, она зависит от размера поперечного сечения.
= G * фи нулевое * Yp
фи нулевое = Mk / G* Yp – жесткость при кручении
tmax = (Mk/ Yp)* rmax – связь напряжения с моментом
Условие прочности при кручении:
tmax = Mk/Wp≤ [t], где
Wp = Yp/ rmax – полярный момент сопротивления сечения.
[t] – допускаемое касательное напряжение.