
- •Нагнетатели – насосы, вентиляторы и компрессоры. Определение, классификация и области применения в схемах энергоснабжения промышленных предприятий
- •Центробежные насосы, вентиляторы, компрессоры. Принцип действия и устройство. Уравнение Эйлера для центробежных нагнетателей, треугольники скоростей, развиваемый напор
- •Подобие центробежных машин. Коэффициент быстроходности. Формулы пропорциональности
- •Характеристики центробежных насосов, работа на трубопровод. Способы регулирования подачи. Параллельное и последовательное включение центробежных нагнетателей
- •Характеристики центробежных вентиляторов: размерные при постоянной и переменной частоте вращения, безразмерные. Работа вентилятора на сеть и регулирование подачи.
- •Характеристики центробежных компрессоров. Работа на сеть. Особенности регулирования производительности.
- •Параллельная и последовательная работа центробежных насосов. Неустойчивость работы. Помпаж.
- •Явление кавитации в центробежных насосах, способы борьбы с ней. Допустимая высота всасывания.
- •Объемные насосы поршневого типа простого, двойного и многократного действия. Устройство и принцип действия, подача действительная q, теоретическая qt. Графики подачи.
- •Поршневые компрессоры простого, двойного и многократного действия. Устройство, производительность. Влияние мертвого пространства на производительность компрессора.
- •Индикаторная диаграмма поршневого насоса. Средние индикаторные давление, мощность и к.П.Д. Насоса
- •Индикаторная диаграмма поршневого компрессора. Средние индикаторные давление, мощность и кпд компрессора.
- •Способы регулирования подачи (производительности) поршневых насосов и компрессоров. Их сравнительная оценка.
- •Типы, назначение и области применения тепловых двигателей. Принцип работы и основные конструктивные элементы энергетических турбомашин. Классификация и маркировка стационарных паровых турбин.
- •2)По характеру теплового процесса:
- •3)По параметрам пара:
- •4)По числу часов использования:
- •5)По конструктивным особенностям:
- •Потери энергии в турбинной ступени, относительные лопаточный и внутренний к.П.Д.
- •Конструктивные схемы паровых турбин. Рабочий процесс в многоступенчатой турбине. Системы парораспределения и регулирования паровых турбин.
- •Классификация режимов работы турбин. Изменение энергетических характеристик ступеней и отсеков турбин и надежности их работы в нестационарных и переходных режимах.
- •Тепловая схема и рабочий процесс энергетической гту открытого цикла. Конструктивные особенности газовых турбин и газотурбинных установок
- •Основные виды, назначения, принципы действия тепломассообменного оборудования предприятий
- •Рекуперативные теплообменные (т/о) аппараты, конструкции, принципы действия, режимы эксплуатации, основные параметры, характеризующие их эффективность
- •Общее положение теплового расчёта рекуперативных теплообменных аппаратов. Особености теплового расчёта аппаратов с однофазными теплоносителями, с конденсацией и ребристых
- •Гидродинамический расчет т/о аппаратов. Основные геометрические характеристики, определение проходных сечений и скоростей теплоносителей
- •Регенеративные теплообменники, конструкции, принцип действия и основы теплового расчёта
- •Тепломассообменные установки контактного (смешивающего) типа. Конструкции, принцип действия, режимы эксплуатации, основы теплогидравлического расчёта
- •Основы процесса термической деаэрации. Термические деаэраторы, назначение, конструкции, принцип действия и принцип их включения в систему водоподготовки
- •Основы теплогидравлического расчёта и конструирования термических деаэраторов
- •Теплообменники систем теплоснабжения и их конструкции. Схемы взаимного течения и определение температур теплоносителей.
- •Классификация сушимых материалов, сушильных установок и сушильных агентов. Основы расчета статики и кинетики сушки.
- •Принципиальные схемы и конструкции сушильных установок. Построение процесса сушки в hd-диаграмме влажного газа
- •1.Сушильная установка непрерывного действия
- •2.Сушильная установка периодического действия
- •Технологические способы выпаривания растворов. Выпарные аппараты и испарители, их назначение и устройство
- •3. По технологии обработки раствора:
- •Эффективность испарения растворителя в таких
- •Определение нагрузок и производительности компрессорной станции (кс) предприятия. Принципы выбора компрессоров и вспомогательного оборудования (кс).
- •Баланс воды в системах технического водоснабжения предприятия, состав и схемы этих систем.
- •Требования к качеству технической воды, оборудование для охлаждения и обработки воды систем технического водоснабжения. Оборотные системы
- •Газовый баланс и расчет потребления газа предприятием. Устройство системы промышленного газоснабжения. Основа гидравлического расчета и выбора их элементов.
- •Методика расчёта потребности предприятия в холоде. Типы холодильных установок систем холодоснабжения и выбор основного оборудования
- •Выбор хладагента
- •Выбор хладоносителя
- •Выбор расчётного режима
- •Выбор типа и количества компрессоров
- •Выбор и расчёт конденсаторов
- •2. Абсорбционные холодильные машины
- •3 . Пароэжекторная холодильная установка
- •Виды и расчёт тепловых нагрузок предприятия. Годовой график продолжительности тепловых нагрузок и его построение
- •1 Метод расчёта тепловых нагрузок
- •2 Метод расчёта тепловых нагрузок (Соколов).
- •Классификация и характеристики систем теплоснабжения Источники теплоты и теплоносители их особенности и выбор
- •1. По виду теплоносителя:
- •2. По виду потребления:
- •Схемы присоединения абонентских установок отопления и горячего водоснабжения к закрытой водяной тепловой сети.
- •Схемы присоединения абонентских установок отопления и горячего водоснабжения к открытой водяной тепловой сети.
- •Схемы совместного присоединения систем отопления и гвс.
- •Паровые системы теплоснабжения и схемы присоединения абонентских установок потребителей.
- •Методы регулирования отпуска теплоты из систем централизованного теплоснабжения. Температурный график и график расходов сетевой воды.
- •Задачи и методика гидравлического расчета транзитных трубопроводов и разветвленных водяных тепловых сетей
- •Расчёт паропроводов и конденсатопроводов. Подбор оборудования системы пароснабжения. Выбор конденсатоотводчиков
- •2.Пропускная способность паропроводов и конденсатопроводов, кг/с
- •3.Массовые доли пара в смеси конденсата и пара за конденсатными горшками x1и в конце конденсатопровода x2
- •3. Плотность смеси конденсата и пара, кг/м3
- •Пьезометрический график напоров водяной тепловой сети. Гидростатический и гидродинамический режимы её работы
- •Методики теплового расчета теплоизоляции и механического расчета теплопроводов
- •Работа, основные энергетические показатели и принципиальная тепловая схема водогрейной котельной.
- •Работа, основные энергетические показатели и принципиальная тепловая схема паровой котельной.
- •Работа, основные энергетические показатели и принципиальная тепловая схема пароводогрейной котельной.
- •Методика расчёта тепловой схемы котельной и характерные расчётные режимы её работы. Выбор типа и мощности котлов
- •Характерные режимы котельной, на которые необходимо проводить тепловой расчет схемы. При проведении расчётов тепловой схемы котельной рекомендуется проводить их на следующие режимы:
- •Выбор вспомогательного оборудования котельной: тягодутьевые машины, насосы, дымовые трубы, деаэраторы, подогреватели
- •Методика составления и расчета тепловых схем тэц. Выбор оборудования промышленных тэц
- •2. Определение расходов пара и тепла в расчётных точках схемы.
- •Технико-экономические и энергетические показатели источников теплоснабжения предприятий
- •1.Полные и удельные капиталовложения.
- •2. Себестоимость энергии.
- •Вторичные энергоресурсы промышленных предприятий. Котлы утилизаторы. Теплонасосные установки.
- •Энергосбережение в котельных и системах централизованного теплоснабжения( тепловых сетях)
- •Характеристика основных типов тепловых электростанций. Принципиальная технологическая схема тэс, состав основного и вспомогательного оборудования
- •1.Вид отпускаемой энергии.
- •2. Вид используемого топлива.
- •3. Тип основных турбин для привода электрогенераторов
- •4. Начальные параметры пара и вид термодинамического цикла.
- •5. Тип парогенераторов.
- •6. Технологическая структура.
- •7. Мощность тэс
- •8. Связь с электроэнергетической системой.
- •9. Степень загрузки и использования электрической мощности.
- •0Сновы выбора и расчета принципиальной тепловой схемы тэс
- •Энергетический баланс турбоагрегата и тэс. Определение к. П. Д. И удельных расходов теплоты и топлива на выработку и отпуск тепловой и электрической энергии тэс
- •Сущность и энергетическая эффективность теплофикации. Коэффициент теплофикации и его оптимальное значение. Удельная выработка электроэнергии на тепловом потреблении
- •Назначение и содержание диаграмм режимов работы теплофикационных паровых турбин различных типов.
- •Топливное хозяйство тэс на твердом топливе. Мазутное и газовое хозяйство тэс. Системы золошлакоудаления
- •Солнечная энергия, ее характеристики. Солнечные энергетические установки. Солнечные электростанции. Системы солнечного теплоснабжения зданий. Солнечные коллекторы, их типы, принципы действия и расчет.
- •Типы ветроэнергетических установок. Ветроэлектростанции. Расчёт идеального ирреального ветряка. Схема ветроэнергетической установки Нет схемы!!!!
- •Геотермальная энергия. Схемы и особенности ГеоТэс. Развитие и геотермальной энергетики в России и мире
- •Способы и устройства использования отходов производства или с/хозяйства для энергоснабжения. Биоэнергетика
- •Виды топлив, их энергетические и технологические характеристики. Способы сжигания топлив и их сравнительный анализ.
- •I. Твердое топливо (тт)
- •5)Влажность:
- •7)Плотность.
- •II. Жидкое топливо.
- •III. Газообразные топлива.
- •Способы сжигания топлив.
- •Тепловой баланс котельных агрегатов, структура тепловых потерь.
- •Теплота сгорания топлива.
- •4 Горение газообразного топлива
- •4.1 Горение предварительно приготовленной однородной горючей смеси
- •4.5 Интенсификация сжигания газообразных теплив
- •5. Горение жидкого топлива
- •5.1 Основные свойства и стадии горения жидких углеводородных топлив
- •5.2 Горение капли жидкого топлива
- •5.3 Продолжительность горения капли топлива
- •5.4 Сжигание жидкого топлива в факеле. Интенсификация горения. Снижение образования токсичных соединений
- •6. Горение твердого топлива
- •6.1 Химическое реагирование углерода
- •6.2 Влияние температуры на процесс горения углерода
- •6.3 Кинетическое уравнение гетерогенного горения
- •6.4 Горение твердого топлива в слое
- •6.5 Горение пылевидного топлива в факеле
8. Связь с электроэнергетической системой.
- включенные в систему;
- изолированные от системы.
9. Степень загрузки и использования электрической мощности.
- базовые, с годовым использованием максимальной мощности Тмакс.= 6000÷7500 ч;
- полубазовые с Тмакс.= 4000÷6000 ч;
- полупиковые с Тмакс.= 2000÷4000 ч;
- пиковые с Тмакс. до 2000 ч.
Для привода электрогенераторов на ТЭС применяют паровые турбины мощностью до 1200 МВт и газовые турбины мощностью до 100-150 МВт. Паротурбинные электростанции, вырабатывающие один вид энергии – электрическую, оснащают турбинами конденсационного типа и называют конденсационными электростанциями (КЭС). Эти станции называют сокращенно ГРЭС. Атомные конденсационные электростанции называют АЭС (устанавливают турбоагрегаты до 1000 МВт). Гидроэлекторстанции (ГЭС) на которых вырабатывают и отпускают два вида энергии – электрическую и тепловую, устанавливают паровые турбины с конденсацией и регулируемыми отборами пара, частично - турбины с противодавлением. Такие ТЭС называются электроцентралями: на органическом топливе ТЭЦ, на ядерном – АТЭЦ.
На АТЭЦ и ТЭЦ осуществляют комбинированное производство и отпуск 2-х видов энергии – электрической и тепловой. Централизованное теплоснабжение потребителей с использованием отработавшей теплоты турбин и выработкой электро- энергии на базе теплового потребления называется теплофикацией. Такие турбины называются теплофикационными.
Т
ехнологическая
схема ТЭС характеризует
состав её теплового хозяйства, взаимную
связь частей, общую последовательность
процессов. В состав ТЭС входят топливное
хозяйство (ТХ)
и устройства для подготовки его перед
сжиганием (ПТ).
ТХ включает в себя приёмно-разгрузочные
устройства, транспортные механизмы,
топливные склады, дробильные устройства.
В состав мазутного хозяйства входят
насосы и подогреватели; мазут и газ
подаётся к топочным камерам парогенераторов
(ПГ)
трубопроводами.
Подготовка твёрдого топлива заключается в размоле и сушке его в пылеприготовительной установке, размещаемой обычно у парогенераторов. Подготовка газа сводится к регулированию давления газа перед поступлением его в топочную камеру.
Продукты сгорания – дымовые газы отсасываются дымососами (ДС) и отводятся через дымовые трубы (Д.Тр) в атмосферу. Негорючая часть твёрдых топлив выпадает в топке в виде шлака (Ш), а значительная часть в виде золы уносится с дымовыми газами. Для защиты атмосферы устанавливают золоуловители (ЗУ). Шлаки и зола (З) удаляются (ШЗУ) гидравлически за пределы территории станции на золоотвалы.
Воздух, необходимый для горения подаётся в топочную камеру дутьевыми вентиляторами (ДВ). Дымососы, дымовая труба, дутьевые вентиляторы составляют дутьевую установку (ТДУ).
При сжигании мазута и газа золоуловители не требуются. Парогенераторв «под наддувом», избыточным давлением в топке и газоходах. Вместо (ДВ) – воздуходувки.
Участки от ТХ до ДТр, включая топочную камеру, газоходы – составляют топливно-газовоздушный тракт ТЭС. В системе топливно-газовоздушного тракта химически связанная энергия топлива при сжигании выделяется в виде тепловой энергии, передаваемой радиацией и конвекцией через стенки металла трубной системы парогенератора воде и образуемому из воды парую
Пароводяной тракт включает в себя пароводяную часть парогенератора, тепловой двигатель (ТД), конденсационную установку, включая конденсатор (К) и конденсатный насос (КН), систему технического водоснабжения (ТВ) с насосами охлаждающей воды (НОВ), водоподготовительную и питательную установку, включающую водоочистку (ВО), ПВД и ПНД, питательные насосы (ПН), а также трубопроводы воды и пара.
Механическая энергия вращения ротора турбины, соединённого с ротором электрического генератора (ЭГ), преобразуется в энергию электрического тока, отводимого за вычетом собственного расхода электрическому потребителю.
Тепло отработавшего в турбинах рабочего тела используется для нужд внешних тепловых потребителей (ТП). Конденсат пара, отведённого тепловому потребителю, подаётся на ТЭЦ насосом обратного конденсата (НОК).
№ 61