
- •Нагнетатели – насосы, вентиляторы и компрессоры. Определение, классификация и области применения в схемах энергоснабжения промышленных предприятий
- •Центробежные насосы, вентиляторы, компрессоры. Принцип действия и устройство. Уравнение Эйлера для центробежных нагнетателей, треугольники скоростей, развиваемый напор
- •Подобие центробежных машин. Коэффициент быстроходности. Формулы пропорциональности
- •Характеристики центробежных насосов, работа на трубопровод. Способы регулирования подачи. Параллельное и последовательное включение центробежных нагнетателей
- •Характеристики центробежных вентиляторов: размерные при постоянной и переменной частоте вращения, безразмерные. Работа вентилятора на сеть и регулирование подачи.
- •Характеристики центробежных компрессоров. Работа на сеть. Особенности регулирования производительности.
- •Параллельная и последовательная работа центробежных насосов. Неустойчивость работы. Помпаж.
- •Явление кавитации в центробежных насосах, способы борьбы с ней. Допустимая высота всасывания.
- •Объемные насосы поршневого типа простого, двойного и многократного действия. Устройство и принцип действия, подача действительная q, теоретическая qt. Графики подачи.
- •Поршневые компрессоры простого, двойного и многократного действия. Устройство, производительность. Влияние мертвого пространства на производительность компрессора.
- •Индикаторная диаграмма поршневого насоса. Средние индикаторные давление, мощность и к.П.Д. Насоса
- •Индикаторная диаграмма поршневого компрессора. Средние индикаторные давление, мощность и кпд компрессора.
- •Способы регулирования подачи (производительности) поршневых насосов и компрессоров. Их сравнительная оценка.
- •Типы, назначение и области применения тепловых двигателей. Принцип работы и основные конструктивные элементы энергетических турбомашин. Классификация и маркировка стационарных паровых турбин.
- •2)По характеру теплового процесса:
- •3)По параметрам пара:
- •4)По числу часов использования:
- •5)По конструктивным особенностям:
- •Потери энергии в турбинной ступени, относительные лопаточный и внутренний к.П.Д.
- •Конструктивные схемы паровых турбин. Рабочий процесс в многоступенчатой турбине. Системы парораспределения и регулирования паровых турбин.
- •Классификация режимов работы турбин. Изменение энергетических характеристик ступеней и отсеков турбин и надежности их работы в нестационарных и переходных режимах.
- •Тепловая схема и рабочий процесс энергетической гту открытого цикла. Конструктивные особенности газовых турбин и газотурбинных установок
- •Основные виды, назначения, принципы действия тепломассообменного оборудования предприятий
- •Рекуперативные теплообменные (т/о) аппараты, конструкции, принципы действия, режимы эксплуатации, основные параметры, характеризующие их эффективность
- •Общее положение теплового расчёта рекуперативных теплообменных аппаратов. Особености теплового расчёта аппаратов с однофазными теплоносителями, с конденсацией и ребристых
- •Гидродинамический расчет т/о аппаратов. Основные геометрические характеристики, определение проходных сечений и скоростей теплоносителей
- •Регенеративные теплообменники, конструкции, принцип действия и основы теплового расчёта
- •Тепломассообменные установки контактного (смешивающего) типа. Конструкции, принцип действия, режимы эксплуатации, основы теплогидравлического расчёта
- •Основы процесса термической деаэрации. Термические деаэраторы, назначение, конструкции, принцип действия и принцип их включения в систему водоподготовки
- •Основы теплогидравлического расчёта и конструирования термических деаэраторов
- •Теплообменники систем теплоснабжения и их конструкции. Схемы взаимного течения и определение температур теплоносителей.
- •Классификация сушимых материалов, сушильных установок и сушильных агентов. Основы расчета статики и кинетики сушки.
- •Принципиальные схемы и конструкции сушильных установок. Построение процесса сушки в hd-диаграмме влажного газа
- •1.Сушильная установка непрерывного действия
- •2.Сушильная установка периодического действия
- •Технологические способы выпаривания растворов. Выпарные аппараты и испарители, их назначение и устройство
- •3. По технологии обработки раствора:
- •Эффективность испарения растворителя в таких
- •Определение нагрузок и производительности компрессорной станции (кс) предприятия. Принципы выбора компрессоров и вспомогательного оборудования (кс).
- •Баланс воды в системах технического водоснабжения предприятия, состав и схемы этих систем.
- •Требования к качеству технической воды, оборудование для охлаждения и обработки воды систем технического водоснабжения. Оборотные системы
- •Газовый баланс и расчет потребления газа предприятием. Устройство системы промышленного газоснабжения. Основа гидравлического расчета и выбора их элементов.
- •Методика расчёта потребности предприятия в холоде. Типы холодильных установок систем холодоснабжения и выбор основного оборудования
- •Выбор хладагента
- •Выбор хладоносителя
- •Выбор расчётного режима
- •Выбор типа и количества компрессоров
- •Выбор и расчёт конденсаторов
- •2. Абсорбционные холодильные машины
- •3 . Пароэжекторная холодильная установка
- •Виды и расчёт тепловых нагрузок предприятия. Годовой график продолжительности тепловых нагрузок и его построение
- •1 Метод расчёта тепловых нагрузок
- •2 Метод расчёта тепловых нагрузок (Соколов).
- •Классификация и характеристики систем теплоснабжения Источники теплоты и теплоносители их особенности и выбор
- •1. По виду теплоносителя:
- •2. По виду потребления:
- •Схемы присоединения абонентских установок отопления и горячего водоснабжения к закрытой водяной тепловой сети.
- •Схемы присоединения абонентских установок отопления и горячего водоснабжения к открытой водяной тепловой сети.
- •Схемы совместного присоединения систем отопления и гвс.
- •Паровые системы теплоснабжения и схемы присоединения абонентских установок потребителей.
- •Методы регулирования отпуска теплоты из систем централизованного теплоснабжения. Температурный график и график расходов сетевой воды.
- •Задачи и методика гидравлического расчета транзитных трубопроводов и разветвленных водяных тепловых сетей
- •Расчёт паропроводов и конденсатопроводов. Подбор оборудования системы пароснабжения. Выбор конденсатоотводчиков
- •2.Пропускная способность паропроводов и конденсатопроводов, кг/с
- •3.Массовые доли пара в смеси конденсата и пара за конденсатными горшками x1и в конце конденсатопровода x2
- •3. Плотность смеси конденсата и пара, кг/м3
- •Пьезометрический график напоров водяной тепловой сети. Гидростатический и гидродинамический режимы её работы
- •Методики теплового расчета теплоизоляции и механического расчета теплопроводов
- •Работа, основные энергетические показатели и принципиальная тепловая схема водогрейной котельной.
- •Работа, основные энергетические показатели и принципиальная тепловая схема паровой котельной.
- •Работа, основные энергетические показатели и принципиальная тепловая схема пароводогрейной котельной.
- •Методика расчёта тепловой схемы котельной и характерные расчётные режимы её работы. Выбор типа и мощности котлов
- •Характерные режимы котельной, на которые необходимо проводить тепловой расчет схемы. При проведении расчётов тепловой схемы котельной рекомендуется проводить их на следующие режимы:
- •Выбор вспомогательного оборудования котельной: тягодутьевые машины, насосы, дымовые трубы, деаэраторы, подогреватели
- •Методика составления и расчета тепловых схем тэц. Выбор оборудования промышленных тэц
- •2. Определение расходов пара и тепла в расчётных точках схемы.
- •Технико-экономические и энергетические показатели источников теплоснабжения предприятий
- •1.Полные и удельные капиталовложения.
- •2. Себестоимость энергии.
- •Вторичные энергоресурсы промышленных предприятий. Котлы утилизаторы. Теплонасосные установки.
- •Энергосбережение в котельных и системах централизованного теплоснабжения( тепловых сетях)
- •Характеристика основных типов тепловых электростанций. Принципиальная технологическая схема тэс, состав основного и вспомогательного оборудования
- •1.Вид отпускаемой энергии.
- •2. Вид используемого топлива.
- •3. Тип основных турбин для привода электрогенераторов
- •4. Начальные параметры пара и вид термодинамического цикла.
- •5. Тип парогенераторов.
- •6. Технологическая структура.
- •7. Мощность тэс
- •8. Связь с электроэнергетической системой.
- •9. Степень загрузки и использования электрической мощности.
- •0Сновы выбора и расчета принципиальной тепловой схемы тэс
- •Энергетический баланс турбоагрегата и тэс. Определение к. П. Д. И удельных расходов теплоты и топлива на выработку и отпуск тепловой и электрической энергии тэс
- •Сущность и энергетическая эффективность теплофикации. Коэффициент теплофикации и его оптимальное значение. Удельная выработка электроэнергии на тепловом потреблении
- •Назначение и содержание диаграмм режимов работы теплофикационных паровых турбин различных типов.
- •Топливное хозяйство тэс на твердом топливе. Мазутное и газовое хозяйство тэс. Системы золошлакоудаления
- •Солнечная энергия, ее характеристики. Солнечные энергетические установки. Солнечные электростанции. Системы солнечного теплоснабжения зданий. Солнечные коллекторы, их типы, принципы действия и расчет.
- •Типы ветроэнергетических установок. Ветроэлектростанции. Расчёт идеального ирреального ветряка. Схема ветроэнергетической установки Нет схемы!!!!
- •Геотермальная энергия. Схемы и особенности ГеоТэс. Развитие и геотермальной энергетики в России и мире
- •Способы и устройства использования отходов производства или с/хозяйства для энергоснабжения. Биоэнергетика
- •Виды топлив, их энергетические и технологические характеристики. Способы сжигания топлив и их сравнительный анализ.
- •I. Твердое топливо (тт)
- •5)Влажность:
- •7)Плотность.
- •II. Жидкое топливо.
- •III. Газообразные топлива.
- •Способы сжигания топлив.
- •Тепловой баланс котельных агрегатов, структура тепловых потерь.
- •Теплота сгорания топлива.
- •4 Горение газообразного топлива
- •4.1 Горение предварительно приготовленной однородной горючей смеси
- •4.5 Интенсификация сжигания газообразных теплив
- •5. Горение жидкого топлива
- •5.1 Основные свойства и стадии горения жидких углеводородных топлив
- •5.2 Горение капли жидкого топлива
- •5.3 Продолжительность горения капли топлива
- •5.4 Сжигание жидкого топлива в факеле. Интенсификация горения. Снижение образования токсичных соединений
- •6. Горение твердого топлива
- •6.1 Химическое реагирование углерода
- •6.2 Влияние температуры на процесс горения углерода
- •6.3 Кинетическое уравнение гетерогенного горения
- •6.4 Горение твердого топлива в слое
- •6.5 Горение пылевидного топлива в факеле
Способы регулирования подачи (производительности) поршневых насосов и компрессоров. Их сравнительная оценка.
Регулирование подачи:
1.изменением длины хода поршня и применяют в малых поршневых насосах с кривошипно-шатунным приводом.
2.изменение частоты вращения электродвигателя (основной способ). Задачей регулирования заключается в таком воздействии на компрессор, которое выравнивает подачу его с расходом газа потребителями. Изменение частоты вращения вала компрессора экономично в эксплуатации.
3.дросселирование подачи, но энергетическая эффективность не высока. Изменение мёртвого пространства - этот способ очень экономичен и получил распространение в компрессорах большой мощности.
№18
Типы, назначение и области применения тепловых двигателей. Принцип работы и основные конструктивные элементы энергетических турбомашин. Классификация и маркировка стационарных паровых турбин.
1.Паровая машина
И
меет
поршневую конструкцию и выброс пара в
атмосферу, а также низкий кпд.
Совершаемая паром при его расширении работа передаётся поршню 1, скользящему в цилиндре 2, и от поршня через шток 3 – шатунно-кривошипному механизму, который преобразует прямолинейное движение поршня во вращательное движение вала машины.
2. Паротурбинные установки (ПТУ)
Преобразование тепловой энергии в механическую работу основано на цикле Ренкина.
На- удельная располагаемая работа турбины, кДж/кг;
ℓt – теоретическая работа турбины, кДж/кг, ℓt= На = h0- h1:
Тепло отводимое при конденсации отработавшего пара q2 = h1- h2;
Теоретическая работа конденсатного насоса ℓtн = h3- h2;
Тепло, подведённое с рабочим телом в турбине q1 = h0- h3.
3. Газотурбинные установки (ГТУ)
1 – забор воздуха;
2 – компрессор;
3- топливо;
4- камера сгорания;
5 – газовая турбина;
6 – выхлоп отработавших газов;
7 – генератор.
4. Комбинированные парогазовые установки (ПГУ)
Установки, в которых комбинируются циклы паровых и газовых турбин. Существуют:
- со сбросом газов в котёл;
- с высоконапорным парогенератором;
- на парогазовой смеси.
5. ДВС
6. Реактивные двигатели
Механическая энергия передаётся за счёт выбрасывания газов из сопла.
7. Магнитодинамические генераторы
Сжатый в компрессоре воздух, подогретый до 1000 – 1300 0С, поступает в камеру сгорания. Образовавшиеся продукты сгорания с температурой 2500 – 2700 0С становятся ионизированными (из за диссоциации). Далее газ движется в канале со скоростью 700 м/с. В магнитном поле между магнитами частицы отклоняются и попадают на электроды: в цепи течёт постоянный ток. Газы выходящие из канала подогревают воздух и вырабатывают пар для паровых турбин.
Сфера применения.
- паротурбинные двигатели для выработки тепловой и электрической энергии – 95%;
- газотурбинные двигатели – на газотурбинных и парогазовых ТЭС – 4 – 5%, ПТД и ГТД применяются для привода крупных механизмов (вентиляторы, воздуходувки), для утилизации теплоты отходов производства;
- транспорт ДВС и ГТД - военная техника; ДВС – тепловоза; ГТД – авиация.
Принцип работы
Осевые турбомашины- это тепловые двигатели, в которых тепловая энергия пара или газа, имеющих высокие давления и температуру преобразуется в механическую энергию, вращающую ротор. Это преобразование происходит в ряде ступеней, каждая из которых состоит из двух конструктивных элементов - это неподвижная сопловая решетка, образованная профилями (кольцами), закрепленными в специальной диафрагме и вращающееся вместе с паром рабочие лопатки, которые закрепляют по окружности дисков связанных с валом турбины.
Между сопловыми решетками образуются сопловые каналы, которые служат для ускорения движения пара (тепловая энергия переходит в кинетическую), рабочие лопатки образуют рабочие каналы для прохода рабочего тела и передачи движения на вал за счет его торможения, а иногда и дополнительно расширения. Если преобразование потенциальной энергии пара или газа в кинетическую происходит преимущественно в сопловых решетках, то соответствующая ступень турбины называется активной, если такое преобразование происходит как в сопловых, так и в рабочих решетках, то такая ступень называется реактивной ступенью p=hос /hо . Степень реакции (Р)- отношение располагаемого теплоперепада на сопловой решетке (hос) на суммарный располагаемый теплоперепад на ступени (hо).
Современные тепловые турбины состоят преимущественно из активных ступеней и называются активными ρ =0,02-0,1. Последние несколько ступеней имеют длинные лопатки у них веерность θ>0,1; θ=1/d∙ℓ; ℓ- высота лопатки, d-средний диаметр ступени.
Для последней ступени ρ >0,3 (до 0,6). Активные турбины имеют дисковую конструкцию ротора. Реактивные ступени ρ >0.4 (до 0.6), лопатки ввариваются в ротор.
Классификация стационарных паровых турбин:
1 )по цели использования:
а) энергетические турбины, которые служат для привода электрогенератора;
б) промышленные турбины для обеспечения паром различных процессов, а также для приводов крупных механизмов на не энергетических предприятиях (компрессоры, паровые молоты) параллельно выдают электрическую энергию в местную сеть;
в) вспомогательные турбины предназначены для обеспечения технологического процесса, для производства электроэнергии на ТЭС (привод питательного насоса и т.д.).