- •Радиолокационные системы
- •Радиолокационные системы
- •Введение
- •1. Общая характеристика радиосистем.
- •1.1. Основные системные принципы
- •Виды радиосистем
- •1.2 Начало радиолокации
- •1.3 Радиолокация как средство наблюдения
- •Диапазоны волн, используемые в радиолокации
- •Радиолокационное наблюдение как средство решения навигационных задач
- •Оптическая локация. Активная оптическая локация
- •Акустическая локация. Общие сведения.
- •Особенности гидроакустических колебаний
- •Гидролокация. Пассивная гидролокация – шумопеленгование
- •Активная гидролокация.
- •2.Физические основы определения местоположения воздушных судов.
- •2.1. Особенности распространения радиоволн
- •Дальность действия радиолинии с активным ответом
- •2.2.Дальность действия связи
- •2.3 Дальность действия активной рлс
- •3. Методы определения местоположения воздушных объектов.
- •3.1. Методы дальнометрии
- •Частотный метод
- •Частотная радиолокация многих целей
- •Импульсный метод
- •3.2. Методы измерения угловых координат.
- •3.2.1 Одноканальное измерение угловой координаты
- •3.2.2. Методы радиопеленгации
- •3.2.3. Моноимпульсные методы измерения угловых координат
- •Обзорные фазовые пеленгаторы
- •3.3. Методы измерения высоты полета
- •Метод максимума
- •Метод наклонного луча
- •Метод парциальных диаграмм.
- •Частотное сканирование луча
- •3.4. Радиотехнические методы определения местоположения объектов
- •4. Радиолокационные системы
- •Задачи решаемые в радиолокационных системах
- •4.1.Обнаружение
- •4.1.1.Параметрические обнаружители. Обнаружение детерминированного сигнала на фоне белого шума
- •Обнаружение сигнала со случайной начальной фазой
- •Обнаружение сигнала со случайными амплитудой и начальной фазой.
- •Оптимальное обнаружение когерентной пачки радиоимпульсов
- •Оптимальное обнаружение некогерентной пачки радиоимпульсов
- •4.1.2.Непараметрические обнаружители
- •Знаковые непараметрические обнаружители
- •Ранговые непараметрические обнаружители. Одноканальные ранговые обнаружители
- •Многоканальный ранговый обнаружитель
- •Стабилизация уровня ложных тревог
- •4.1.4.Принципы автоматического обнаружения воздушных объектов
- •4.2. Измерение координат и параметров движения
- •4.2.1.Измерение дальности
- •4.2.2.Измерение азимута
- •Разрешение сигналов
- •Разрешающая способность по дальности
- •Разрешающая способность по азимуту
- •Разрешающая способность по углу места
- •Разрешающая способность по высоте
- •Разрешающий объем рлс
- •Распознавание воздушных объектов
- •Распознавание по широкополосным сигналам
- •Распознавание по многочастотным сигналам
- •Распознавание по узкополосным сигналам
- •4.5. Помехозащищенность.
- •4.5.1. Защита от пассивных помех, отражений от «местных предметов» и метеообразований.
- •4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»
- •4.5.1.2.Статистические характеристики пассивных помех
- •4.5.1.3. Когерентность сигналов
- •Радиолокаторы с эквивалентной внутренней когерентностью
- •Радиолокаторы с внешней когерентностью
- •Радиолокаторы с истинной внутренней когерентностью
- •4.5.1.4.Селекция сигналов движущихся целей
- •Гребенчатые фильтры накопления
- •Гребенчатые фильтры подавления
- •Принцип когерентной оптимальной обработки на видеочастоте
- •4.5.1.5.Особенности систем сдц
- •Подавитель на промежуточной частоте
- •Череспериодное вычитание
- •4.5.1.6. Формирование карты местных предметов
- •4.5.1.7 Применение систем сдц для компенсации сигналов дискретных пассивных помех
- •4.5.1.8. Компенсация сигналов дискретных пассивных помех при корреляционном анализе
- •4.5.1.9. Цифровая система селекции движущихся целей
- •4.5.1.10. Дискретно-аналоговые системы сдц
- •Устранение слепых скоростей в компенсаторе на ппз
- •4.5.1.11. Многоканальная доплеровская фильтрация
- •4.5.1.12. Некоторые методы скоростной селекции
- •4.5.1.13 Основные характеристики систем сдц Коэффициент подавления пассивной помехи
- •Коэффициент подпомеховой видимости (коэффициент улучшения)
- •4.5.2. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •4.5.2.1 Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •4.5.2.2. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •4.5.2.3. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •4.5.2.4. Нормирование уровня импульсных помех при обработке сложных сигналов
- •4.5.2.5.Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •4.5.3.Активные маскирующие помехи и принципы защиты от них
- •4.6. Виды радиосигналов принимаемых в рлс
- •4.6.1. Характеристики сигналов рлс
- •4.6.2.Функция неопределенности прямоугольного радиоимпульса
- •4.6.3. Широкополосные сигналы
- •4.6.4. Функция неопределенности фазокодоманипулированного сигнала
- •4.6.5.Функция неопределенности сигнала с линейной частотой модуляции
- •4.6.6.Обработка фкм – сигнала
- •4.6.7.Пачка когерентных радиоимпульсов
- •4.6.8. Пачка радиоимпульсов со случайными начальными фазами
- •4.7. Активные системы радиолокации
- •4.7.1. Активные системы с пассивным ответом (первичные рлс)
- •4.7.2. Структура первичной рлс
- •Первичные средства радиолокации
- •4.7.3. Активные системы с активным ответом (вторичные рлс)
- •Структура и принцип работы систем вторичной радиолокации
- •Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •Кодирование запросных и ответных сигналов. Методы кодирования запросных и ответных сигналов
- •Структура запросных сигналов
- •Структура ответных сигналов. Ответный сигнал режима увд
- •Ответный сигнал режима rbs
- •4.7.4. Дискретно–адресная система вторичной радиолокации
- •4.7.5. Система радиолокационного опознавания
- •Классификация систем радиолокационного опознавания
- •Методы кодирования и декодирования сигналов
- •Защита от влияния боковых лепестков диаграммы направленности антенны. Принцип защиты ответчиков от запросных сигналов, излучаемых запросчиками в боковых направлениях
- •5. Пассивная радиолокация
- •6. Радиолокационные системы с синтезированной апертурой
- •7. Предупреждение столкновений воздушных судов
- •8.Автоматическое зависимое наблюдение
- •9.Загоризонтная радиолокация.
- •9.1.Историческая справка
- •9.2.Особенности загоризонтных радиолокаторов
- •9.3.Уравнение радиолокации
- •9.4.Потенциал радиолокационной станции
- •9.5.Методы защиты рлс от радиопомех
- •Адаптация к помеховым условиям путем выбора канала с минимальным уровнем активных помех
- •Адаптивная пространственная фильтрация активных помех
- •9.6.Принципы построения загоризонтных рлс
- •10. Пространственно-временная обработка
- •Пространственно-временная обработка
- •Объединение во времени результатов первичной обработки
- •Статистическая модель движения объекта.
- •Алгоритм вторичной обработки радиолокационной информации
- •Пространственно-некогерентное объединение обнаруженных отметок и единичных замеров при централизованной обработке.
- •Пространственно-временная обработка в бортовых рлс
- •11. Особенности эксплуатации радиолокационной системы
- •11.1. Исторические аспекты теории надежности.
- •11.2.Система качества
- •11.3. Эксплуатация и ремонт технических систем
- •Надежность технических систем при эксплуатации.
- •Эксплуатационные методы обеспечения надежности.
- •Система технического обслуживания и ремонта.
- •Методика обнаружения неисправностей
- •Метод последовательных приближений
- •Способ контрольных переключений и регулировок
- •Способ промежуточных измерений
- •Способ замены
- •Способ внешнего осмотра
- •Порядок испытаний при обнаружении неисправностей, возникающих после включения системы.
- •Литература
- •Список сокращений
4.6.3. Широкополосные сигналы
Импульсный сигнал считается широкополосным, если произведение его длительности на ширину спектра частот . Есть и другой подход в определении широкополосности сигнала. Так, например, в 1990 в США введено общее определение относительной полосы частот η:
В соответствии с этим определением сигналы, имеющие полосу η≤0,01 относится к узкополосным; имеющие 0,01<η≤0,25 относится к широкополосным; имеющие 0,25<η<1 относятся к сверхширокополосным (СШП).
В качестве СШП могут использоваться кодоимпульсные последовательности, линейно-частотно-модулированные сигналы, псевдошумовые сигналы, видеоимпульсы, не имеющие высокочастотного заполнения и радиоимпульсы, имеющие высокочастотное заполнение, состоящее из нескольких периодов высокочастотного колебания. Внешний вид сигналов изображен на рис.4.174.
Широкополосность сигнала достигается путем внутриимпульсной модуляции фазы или частоты колебаний. Широкополосный сигнал (радиоимпульс) имеет ширину спектра в n раз большую, чем импульс той же длительности без внутриимпульсной модуляции ширина его спектра соответствует импульсу без внутриимпульсной модуляции существенно меньшей длительности .
Обработка широкополосных сигналов реализуется в оптимальных фильтрах, импульсы, на выходе которых определяются амплитудно-частотным спектром сигнала. Широкополосные радиоимпульсы в оптимальном фильтре сжимаются, причем тем сильнее, чем больше произведение .
4.6.4. Функция неопределенности фазокодоманипулированного сигнала
Объем тела неопределенности всегда равен 4Е2. Из этого следует, что идеальное тело неопределенности имеет вид перевернутой кнопки,
его основной объем сосредоточен в широком основании. Пик в точке τ=0, fд=0 узкий в обеих плоскостях, что обеспечивает хорошее разрешение по времени и частоте. Вид такой функции неопределенности изображен на рис.4.175.
Подобной функцией неопределенности обладает реализация белого шума. В радиотехнических системах широкое применение нашли ФКМ сигналы, функция корреляции которых при удачном коде фазы приближается к идеальной. Самый лучший бинарный код – код Баркера. При его использовании уровень боковых лепестков функции неопределенности по дальности равен 1/N. Коды Баркера существуют для N=3,4,5,7,13.
С помощью согласованных фильтров производится сжатие сигналов во времени. Коэффициент сжатия равен базе сигнала
(.4.99)
На рис.4.176 изображенафункция неопределенности по дальности ФКМ – сигнала с кодом Баркера, N=5.
Так как базы Баркера существуют только для , то коэффициент сжатия может оказаться недостаточным. Применяют другие коды, среди которых наиболее распространены M – последовательности (коды максимальной длины).
В этих кодах чередование нулей и единиц обладает свойствами случайной последовательности, поэтому соответствующие сигналы называют шумоподобными. М – последовательность может быть реализована с помощью схемы, изображенной на рис.4.177.
Число триггерных ячеек n называется основанием кода. Наибольшее число, которое может быть представлено n – разрядным двоичным кодом, равно 2n. Длина М – последовательности
N=2n-1. Вид кода зависит от того, к каким ячейкам подключен сумматор по модулю 2. Полученный код используется для фазовой манипуляции (рис.4.178).
Выбором достаточно большого N обеспечивают необходимое значение коэффициента сжатия и уровня боковых лепестков функции неопределенности.