- •Радиолокационные системы
- •Радиолокационные системы
- •Введение
- •1. Общая характеристика радиосистем.
- •1.1. Основные системные принципы
- •Виды радиосистем
- •1.2 Начало радиолокации
- •1.3 Радиолокация как средство наблюдения
- •Диапазоны волн, используемые в радиолокации
- •Радиолокационное наблюдение как средство решения навигационных задач
- •Оптическая локация. Активная оптическая локация
- •Акустическая локация. Общие сведения.
- •Особенности гидроакустических колебаний
- •Гидролокация. Пассивная гидролокация – шумопеленгование
- •Активная гидролокация.
- •2.Физические основы определения местоположения воздушных судов.
- •2.1. Особенности распространения радиоволн
- •Дальность действия радиолинии с активным ответом
- •2.2.Дальность действия связи
- •2.3 Дальность действия активной рлс
- •3. Методы определения местоположения воздушных объектов.
- •3.1. Методы дальнометрии
- •Частотный метод
- •Частотная радиолокация многих целей
- •Импульсный метод
- •3.2. Методы измерения угловых координат.
- •3.2.1 Одноканальное измерение угловой координаты
- •3.2.2. Методы радиопеленгации
- •3.2.3. Моноимпульсные методы измерения угловых координат
- •Обзорные фазовые пеленгаторы
- •3.3. Методы измерения высоты полета
- •Метод максимума
- •Метод наклонного луча
- •Метод парциальных диаграмм.
- •Частотное сканирование луча
- •3.4. Радиотехнические методы определения местоположения объектов
- •4. Радиолокационные системы
- •Задачи решаемые в радиолокационных системах
- •4.1.Обнаружение
- •4.1.1.Параметрические обнаружители. Обнаружение детерминированного сигнала на фоне белого шума
- •Обнаружение сигнала со случайной начальной фазой
- •Обнаружение сигнала со случайными амплитудой и начальной фазой.
- •Оптимальное обнаружение когерентной пачки радиоимпульсов
- •Оптимальное обнаружение некогерентной пачки радиоимпульсов
- •4.1.2.Непараметрические обнаружители
- •Знаковые непараметрические обнаружители
- •Ранговые непараметрические обнаружители. Одноканальные ранговые обнаружители
- •Многоканальный ранговый обнаружитель
- •Стабилизация уровня ложных тревог
- •4.1.4.Принципы автоматического обнаружения воздушных объектов
- •4.2. Измерение координат и параметров движения
- •4.2.1.Измерение дальности
- •4.2.2.Измерение азимута
- •Разрешение сигналов
- •Разрешающая способность по дальности
- •Разрешающая способность по азимуту
- •Разрешающая способность по углу места
- •Разрешающая способность по высоте
- •Разрешающий объем рлс
- •Распознавание воздушных объектов
- •Распознавание по широкополосным сигналам
- •Распознавание по многочастотным сигналам
- •Распознавание по узкополосным сигналам
- •4.5. Помехозащищенность.
- •4.5.1. Защита от пассивных помех, отражений от «местных предметов» и метеообразований.
- •4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»
- •4.5.1.2.Статистические характеристики пассивных помех
- •4.5.1.3. Когерентность сигналов
- •Радиолокаторы с эквивалентной внутренней когерентностью
- •Радиолокаторы с внешней когерентностью
- •Радиолокаторы с истинной внутренней когерентностью
- •4.5.1.4.Селекция сигналов движущихся целей
- •Гребенчатые фильтры накопления
- •Гребенчатые фильтры подавления
- •Принцип когерентной оптимальной обработки на видеочастоте
- •4.5.1.5.Особенности систем сдц
- •Подавитель на промежуточной частоте
- •Череспериодное вычитание
- •4.5.1.6. Формирование карты местных предметов
- •4.5.1.7 Применение систем сдц для компенсации сигналов дискретных пассивных помех
- •4.5.1.8. Компенсация сигналов дискретных пассивных помех при корреляционном анализе
- •4.5.1.9. Цифровая система селекции движущихся целей
- •4.5.1.10. Дискретно-аналоговые системы сдц
- •Устранение слепых скоростей в компенсаторе на ппз
- •4.5.1.11. Многоканальная доплеровская фильтрация
- •4.5.1.12. Некоторые методы скоростной селекции
- •4.5.1.13 Основные характеристики систем сдц Коэффициент подавления пассивной помехи
- •Коэффициент подпомеховой видимости (коэффициент улучшения)
- •4.5.2. Понятие о динамическом диапазоне сигналов и помех и необходимости их нормирования
- •4.5.2.1 Нормирование уровня длинных импульсных помех с помощью схемы шоу
- •4.5.2.2. Нормирование уровня длинных импульсных помех с помощью схемы рос
- •4.5.2.3. Нормирование уровня коротких и длинных помех с помощью схемы шоу-рос
- •4.5.2.4. Нормирование уровня импульсных помех при обработке сложных сигналов
- •4.5.2.5.Обработка сигналов в условиях воздействия несинхронных импульсных помех
- •4.5.3.Активные маскирующие помехи и принципы защиты от них
- •4.6. Виды радиосигналов принимаемых в рлс
- •4.6.1. Характеристики сигналов рлс
- •4.6.2.Функция неопределенности прямоугольного радиоимпульса
- •4.6.3. Широкополосные сигналы
- •4.6.4. Функция неопределенности фазокодоманипулированного сигнала
- •4.6.5.Функция неопределенности сигнала с линейной частотой модуляции
- •4.6.6.Обработка фкм – сигнала
- •4.6.7.Пачка когерентных радиоимпульсов
- •4.6.8. Пачка радиоимпульсов со случайными начальными фазами
- •4.7. Активные системы радиолокации
- •4.7.1. Активные системы с пассивным ответом (первичные рлс)
- •4.7.2. Структура первичной рлс
- •Первичные средства радиолокации
- •4.7.3. Активные системы с активным ответом (вторичные рлс)
- •Структура и принцип работы систем вторичной радиолокации
- •Системы подавления сигналов боковых лепестков диаграмм направленности антенн
- •Кодирование запросных и ответных сигналов. Методы кодирования запросных и ответных сигналов
- •Структура запросных сигналов
- •Структура ответных сигналов. Ответный сигнал режима увд
- •Ответный сигнал режима rbs
- •4.7.4. Дискретно–адресная система вторичной радиолокации
- •4.7.5. Система радиолокационного опознавания
- •Классификация систем радиолокационного опознавания
- •Методы кодирования и декодирования сигналов
- •Защита от влияния боковых лепестков диаграммы направленности антенны. Принцип защиты ответчиков от запросных сигналов, излучаемых запросчиками в боковых направлениях
- •5. Пассивная радиолокация
- •6. Радиолокационные системы с синтезированной апертурой
- •7. Предупреждение столкновений воздушных судов
- •8.Автоматическое зависимое наблюдение
- •9.Загоризонтная радиолокация.
- •9.1.Историческая справка
- •9.2.Особенности загоризонтных радиолокаторов
- •9.3.Уравнение радиолокации
- •9.4.Потенциал радиолокационной станции
- •9.5.Методы защиты рлс от радиопомех
- •Адаптация к помеховым условиям путем выбора канала с минимальным уровнем активных помех
- •Адаптивная пространственная фильтрация активных помех
- •9.6.Принципы построения загоризонтных рлс
- •10. Пространственно-временная обработка
- •Пространственно-временная обработка
- •Объединение во времени результатов первичной обработки
- •Статистическая модель движения объекта.
- •Алгоритм вторичной обработки радиолокационной информации
- •Пространственно-некогерентное объединение обнаруженных отметок и единичных замеров при централизованной обработке.
- •Пространственно-временная обработка в бортовых рлс
- •11. Особенности эксплуатации радиолокационной системы
- •11.1. Исторические аспекты теории надежности.
- •11.2.Система качества
- •11.3. Эксплуатация и ремонт технических систем
- •Надежность технических систем при эксплуатации.
- •Эксплуатационные методы обеспечения надежности.
- •Система технического обслуживания и ремонта.
- •Методика обнаружения неисправностей
- •Метод последовательных приближений
- •Способ контрольных переключений и регулировок
- •Способ промежуточных измерений
- •Способ замены
- •Способ внешнего осмотра
- •Порядок испытаний при обнаружении неисправностей, возникающих после включения системы.
- •Литература
- •Список сокращений
4.6. Виды радиосигналов принимаемых в рлс
4.6.1. Характеристики сигналов рлс
Сигналы используемые в РЛС определяют степень разрешения по различным параметрам (координатам).
Относительно потенциальной разрешающей способности по дальности следует сказать следующее, рассматривая случай двух узкополосных сигналов S(t) и S(t-τ).
В соответствии с положением введенным Ф.М. Вудвортом, сигналы S(t) и S(t-τ) разрешаются, если мера различия между ними ε2 достаточно велика.
, (4.91)
где Е – энергия сигнала на нагрузке в 1 Ом.
При этом сигнале S(t) представлен в следующей форме
где - комплексная амплитуда сигнала.
Если сигналы узкополосные, член осциллирует быстрее, чем изменяется функция По этой причине учитывать его при оценке разрешающей способности нецелесообразно. Тогда
, (4.92)
где
Функция получила название функции неопределенности по дальности. Ее значение при различных временных сдвигах сигналов τ определяет меру различимости между ними.
Какова должна быть минимальная разница между сигналами ε2, чтобы они различались? Следуя Вудворду, потенциальная разрешающая способность определяется как основание прямоугольника высотой , равновеликого площади под кривой (рис.4.165):
Используя преобразование Фурье
, (4.93)
где - эффективная ширина спектра сигнала. Таким образом, потенциальная разрешающая способность по времени (а следовательно, и по дальности) обратно пропорциональна эффективной ширине спектра сигнала.
На практике алгоритм разрешения реализуется согласованными фильтрами (рис.4.166)
При движении цели относительно РЛС принимаемые сигналы имеют Доплеровское смещение частоты.
В этом случае
,
где - функция неопределенности по дальности и радиальной скорости.
В общем случае - сложная функция двух аргументов.
Пологая в частном случае fд=0 получим
В другом частном случае τ=0, получаем
Функция носит название функции неопределенности по частоте (по скорости).
Потенциальная размещающая способность по частоте определяется следующим образом
На рис.4.167. изображен квадрат модуля функции неопределенности по скорости
, (4.94)
где τэ – эффективная длительность сигнала.
Функцию можно представить как поверхность в трехмерном пространстве, которая называется поверхностью неопределенности, а ограниченная ее фигура – телом неопределенности (рис.4.168)
Потенциальная совместная разрешающая способность по времени и частоте находится как площадь основания цилиндра, имеющего такой же объем и такую же высоту, что и тело неопределенности
Фактически представляет собой площадь области высокой корреляции (рис.4.169).
4.6.2.Функция неопределенности прямоугольного радиоимпульса
Сигнал представляет собой прямоугольный радиоимпульс с гармоническим заполнением (рис.4.170)
. (4.95)
При вычислении функции неопределенности рассмотрим отдельно случаи положительных и отрицательных временных сдвигов между импульсами. При
При результат аналогичен. Обобщая результаты получим
(4.96)
Рассмотрим сечение функции неопределенности для случая fд=0. Результат получится следующий
. (4.97)
Сечение соответствующей поверхности плоскостью fд=0 изображена на рис.4.171
При сечении плоскостью τ=0 получаем
(4.98)
Полученная формула соответствует модулю спектра прямоугольного видеоимпульса, являющего огибающей исходного сигнала (рис.4.172).
На рис.4.163 изображена диаграмма неопределенности прямоугольного радиоимпульса
Чем больше длительность импульса, тем выше разрешающая способность по частоте, но хуже разрешающая способность по времени. Чем меньше длительность импульса, тем выше разрешающая способность по времени, но хуже по частоте. Такое положение является иллюстрацией принципа неопределенности в радиолокации.